Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
3
result(s) for
"magnetically recyclable catalyst"
Sort by:
Green synthesis of C5–C6-unsubstituted 1,4-DHP scaffolds using an efficient Ni–chitosan nanocatalyst under ultrasonic conditions
2022
A heterogeneous and magnetically recyclable Ni–chitosan nanocatalyst was synthesized and thoroughly characterized by powder Fourier-transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD) analysis, scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HRTEM), energy-dispersive X-ray (EDX) spectroscopy, etc. It was effectively utilized in the eco-friendly synthesis of new C5–C6-unsubstituted 1,4-DHPs under ultrasonic irradiation. The important focus of the methodology was to develop an environmentally friendly protocol with a short reaction time and a simple reaction procedure. The other advantages of this protocol are a wide substrate scope, a very good product yield, the use of an eco-friendly solvent and a recyclable nanocatalyst, as well as reaction at room temperature.
Journal Article
Sustainable Utility of Magnetically Recyclable Nano-Catalysts in Water: Applications in Organic Synthesis
by
Branco, Paula
,
Gawande, Manoj
,
Rathi, Anuj
in
aqueous medium
,
magnetically recyclable nano-catalysts
,
organic synthesis
2013
Magnetically recyclable nano-catalysts and their use in aqueous media is a perfect combination for the development of greener sustainable methodologies in organic synthesis. It is well established that magnetically separable nano-catalysts avoid waste of catalysts or reagents and it is possible to recover >95% of catalysts, which is again recyclable for subsequent use. Water is the ideal medium to perform the chemical reactions with magnetically recyclable nano-catalysts, as this combination adds tremendous value to the overall benign reaction process development. In this review, we highlight recent developments inthe use of water and magnetically recyclable nano-catalysts (W-MRNs) for a variety of organic reactions namely hydrogenation, condensation, oxidation, and Suzuki–Miyaura cross-coupling reactions, among others.
Journal Article
Zinc-bearing dust derived non-toxic mixed iron oxides as magnetically recyclable photo-Fenton catalyst for degradation of dye
by
Ma, ShuJia
,
Cheng, Fangqin
,
Li, Peng
in
Aqueous solutions
,
Atmospheric particulates
,
Catalysis
2021
In this paper, comprehensive utilization of hazardous zinc-bearing dust for preparation of non-toxic mixed iron oxides as a magnetically recyclable photo-Fenton catalyst for degradation of dye by a facile solid state reaction process was proposed. The as-prepared samples were characterized by X-ray diffraction (XRD), Raman spectra, ultraviolet and visible (UV-Vis) spectra and Physical Property Measurement System (PPMS), and the degradation performance of as-prepared catalysts was also tested and analyzed. The results show that spinel ferrite coexisting with or without Fe2O3 was the predominant phase in the as-prepared samples, which were confirmed by Raman analysis. The as-prepared samples presented high degradation efficiency (about 90%) of rhodamine B (RhB) in the presence of hydrogen peroxide (H2O2) with visible light irradiation, owing to the synergistic effect of photocatalyst reaction and Fenton-like catalyst reaction during the degradation process. The mixed iron oxides also presented stable structure and exhibited excellent reusability with a degradation efficiency of 87% after the fifth cycle of reuse. Importantly, the heavy metals in the zinc-bearing dust could be fixed in the stable spinel structure. This paper could provide a simple approach for comprehensive utilization of zinc-bearing dust to synthesize non-toxic mixed iron oxides as a magnetically recyclable photo-Fenton catalyst for degradation of dye.
Journal Article