Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
183 result(s) for "mannoprotein"
Sort by:
Compromised chitin synthesis in lager yeast affects its Congo red resistance and release of mannoproteins from the cells
ABSTRACT A mutant lager strain resistant to the cell wall-perturbing agent Congo red (CR) was isolated and the genetic alterations underlying CR resistance were investigated by whole genome sequencing. The parental lager strain was found to contain three distinct Saccharomyces cerevisiae (Sc)-type CHS6 (CHitin Synthase-related 6) alleles, two of which have one or two nonsense mutations in the open reading frame, leaving only one functional allele, whereas the functional allele was missing in the isolated CR-resistant strain. On the other hand, the Saccharomyces eubayanus-type CHS6 alleles shared by both the parental and mutant strains appeared to contribute poorly to chitin synthase-activating function. Therefore, the CR resistance of the mutant strain was attributable to the overall compromised activity of CHS6 gene products. The CR-resistant mutant cells exhibited less chitin production on the cell surface and smaller amounts of mannoprotein release into the medium. All these traits, in addition to the CR resistance, were complemented by the functional ScCHS6 gene. It is of great interest whether the frequent nonsense mutations found in ScCHS6 open reading frame in lager yeast strains are a consequence of the domestication process of lager yeast. Compromised chitin synthesis in lager yeast leads to mannoprotein release.
Biosynthesis Pathways, Transport Mechanisms and Biotechnological Applications of Fungal Siderophores
Iron (Fe) is the fourth most abundant element on earth and represents an essential nutrient for life. As a fundamental mineral element for cell growth and development, iron is available for uptake as ferric ions, which are usually oxidized into complex oxyhydroxide polymers, insoluble under aerobic conditions. In these conditions, the bioavailability of iron is dramatically reduced. As a result, microorganisms face problems of iron acquisition, especially under low concentrations of this element. However, some microbes have evolved mechanisms for obtaining ferric irons from the extracellular medium or environment by forming small molecules often regarded as siderophores. Siderophores are high affinity iron-binding molecules produced by a repertoire of proteins found in the cytoplasm of cyanobacteria, bacteria, fungi, and plants. Common groups of siderophores include hydroxamates, catecholates, carboxylates, and hydroximates. The hydroxamate siderophores are commonly synthesized by fungi. L-ornithine is a biosynthetic precursor of siderophores, which is synthesized from multimodular large enzyme complexes through non-ribosomal peptide synthetases (NRPSs), while siderophore-Fe chelators cell wall mannoproteins (FIT1, FIT2, and FIT3) help the retention of siderophores. S. cerevisiae, for example, can express these proteins in two genetically separate systems (reductive and nonreductive) in the plasma membrane. These proteins can convert Fe (III) into Fe (II) by a ferrous-specific metalloreductase enzyme complex and flavin reductases (FREs). However, regulation of the siderophore through Fur Box protein on the DNA promoter region and its activation or repression depend primarily on the Fe availability in the external medium. Siderophores are essential due to their wide range of applications in biotechnology, medicine, bioremediation of heavy metal polluted environments, biocontrol of plant pathogens, and plant growth enhancement.
Exploring fungal bioemulsifiers: insights into chemical composition, microbial sources, and cross-field applications
The demand for emulsion-based products is crucial for economic development and societal well-being, spanning diverse industries such as food, cosmetics, pharmaceuticals, and oil extraction. Formulating these products relies on emulsifiers, a distinct class of surfactants. However, many conventional emulsifiers are derived from petrochemicals or synthetic sources, posing potential environmental and human health risks. In this context, fungal bioemulsifiers emerge as a compelling and sustainable alternative, demonstrating superior performance, enhanced biodegradability, and safety for human consumption. From this perspective, the present work provides the first comprehensive review of fungal bioemulsifiers, categorizing them based on their chemical nature and microbial origin. This includes polysaccharides, proteins, glycoproteins, polymeric glycolipids, and carbohydrate-lipid-protein complexes. Examples of particular interest are scleroglucan, a polysaccharide produced by Sclerotium rolfsii , and mannoproteins present in the cell walls of various yeasts, including Saccharomyces cerevisiae . Furthermore, this study examines the feasibility of incorporating fungal bioemulsifiers in the food and oil industries and their potential role in bioremediation events for oil-polluted marine environments. Finally, this exploration encourages further research on fungal bioemulsifier bioprospecting, with far-reaching implications for advancing sustainable and eco-friendly practices across various industrial sectors.
Targeting the fungal cell wall: current therapies and implications for development of alternative antifungal agents
Fungal infections are a worldwide problem associated with high morbidity and mortality. There are relatively few antifungal agents, and resistance has emerged within these pathogens for the newest antifungal drugs. As the fungal cell wall is critical for growth and development, it is one of the most important targets for drug development. In this review, the currently available cell wall inhibitors and suitable drug candidates for the treatment of fungal infections are explored. Future studies of the fungal cell wall and compounds that have detrimental effects on this important outer structural layer could aid in antifungal drug discovery and lead to the development of alternative cell wall inhibitors to fill gaps in clinical therapies for difficult-to-treat fungal infections.
An integrated model of the recognition of Candida albicans by the innate immune system
Key Points Recognition of fungi by the innate immune system depends on 'tasting' several pathogen-associated molecular patterns (PAMPs) in the fungal cell wall. Specific receptor systems have evolved for the recognition of the major polysaccharide cell wall components, such as the mannose receptor (MR) and DC-SIGN for recognition of branched N -linked mannan, Toll-like receptor 4 (TLR4) for linear O -linked mannan, galectin 3 for β-mannosides, complement receptor 3 (CR3) for β-(1,6)-glucan, and dectin 1 and TLR2 for β-glucan and phospholipomannan. Despite overlapping and sometimes redundant functions, each ligand–receptor system activates specific intracellular pathways, and this has distinct consequences for the activation of the various arms of the immune response. Differential expression of the various pattern-recognition receptors (PRRs) is an important mechanism for the cell-type-specific response to fungal pathogens. The fully integrated response to a specific pathogen depends on the mosaic of PRRs and receptor complexes that is engaged. The recognition pathways might operate singly or, more likely, in combination. Co-stimulation via multiple PAMP–PRR combinations might increase both the sensitivity and the specificity of the immune recognition process. Although described here for Candida albicans , these principles of innate immune recognition can be considered as a blueprint for pattern recognition of all pathogenic microorganisms by the innate immune response. Recognition of fungi by the innate immune system depends on 'tasting' several pathogen-associated molecular patterns in the fungal cell wall. In this Review, the authors pull together the available in vitro and in vivo data to propose an integrated model for Candida albicans recognition by the innate immune system. The innate immune response was once considered to be a limited set of responses that aimed to contain an infection by primitive 'ingest and kill' mechanisms, giving the host time to mount a specific humoral and cellular immune response. In the mid-1990s, however, the discovery of Toll-like receptors heralded a revolution in our understanding of how microorganisms are recognized by the innate immune system, and how this system is activated. Several major classes of pathogen-recognition receptors have now been described, each with specific abilities to recognize conserved bacterial structures. The challenge ahead is to understand the level of complexity that underlies the response that is triggered by pathogen recognition. In this Review, we use the fungal pathogen Candida albicans as a model for the complex interaction that exists between the host pattern-recognition systems and invading microbial pathogens.
Optimised Extraction and Preliminary Characterisation of Mannoproteins from Non-Saccharomyces Wine Yeasts
The exogenous application of yeast-derived mannoproteins presents many opportunities for the improvement of wine technological and oenological properties. Their isolation from the cell wall of Saccharomycescerevisiae has been well studied. However, investigations into the efficiency of extraction methods from non-Saccharomyces yeasts are necessary to explore the heterogeneity in structure and composition that varies between yeast species, which may influence wine properties such as clarity and mouthfeel. In this study, nine yeast strains were screened for cell wall mannoprotein content using fluorescence microscopy techniques. Four species were subsequently exposed to a combination of mechanical and enzymatic extraction methods to optimize mannoprotein yield. Yeast cells subjected to 4 min of ultrasound treatment applied at 80% of the maximum possible amplitude with a 50% duty cycle, followed by an enzymatic treatment of 4000 U lyticase per g dry cells weight, showed the highest mannoprotein-rich yield from all species. Furthermore, preliminary evaluation of the obtained extracts revealed differences in carbohydrate/protein ratios between species and with increased enzyme incubation time. The results obtained in this study form an important step towards further characterization of extraction treatment impact and yeast species effect on the isolated mannoproteins, and their subsequent influence on wine properties.
The Pathogenesis of Aspergillus fumigatus, Host Defense Mechanisms, and the Development of AFMP4 Antigen as a Vaccine
is one of the ubiquitous fungi with airborne conidia, which accounts for most aspergillosis cases. In immunocompetent hosts, the inhaled conidia are rapidly eliminated. However, immunocompromised or immunodeficient hosts are particularly vulnerable to most infections and invasive aspergillosis (IA), with mortality from 50% to 95%. Despite the improvement of antifungal drugs over the last few decades, the therapeutic effect for IA patients is still limited and does not provide significant survival benefits. The drawbacks of antifungal drugs such as side effects, antifungal drug resistance, and the high cost of antifungal drugs highlight the importance of finding novel therapeutic and preventive approaches to fight against IA. In this article, we systemically addressed the pathogenic mechanisms, defense mechanisms against , the immune response, molecular aspects of host evasion, and vaccines’ current development against aspergillosis, particularly those based on AFMP4 protein, which might be a promising antigen for the development of anti- vaccines.
Quality Characteristics of Reduced-Fat Emulsified Sausages Made with Yeast Mannoprotein Enzymatically Prepared with a β-1,6-glucanase
Mannoproteins, as yeast polysaccharides, have been utilized in food the industry as dietary fibers, emulsifying agents or fat replacers. Mannoprotein MP112, produced from yeast by enzymatic hydrolysis of myxobacterial β-1,6-glucanase GluM, exhibits excellent emulsifying properties in emulsion preparation. In this study, we aimed to examine the application of stable emulsion with the addition of mannoprotein MP112 (MP112 emulsion) to reduce the fat content of sausages. The addition of MP112 emulsion in emulsified sausages significantly reduced the fat content and increased the moisture and protein contents of emulsified sausages without the expense of their good sensory quality. Moreover, the textural properties of sausages were markedly improved with the higher hardness, chewiness and cohesiveness, especially in the 50–75% replacement ratio of MP112 emulsion. On the other hand, MP112 emulsion replacement of animal fat markedly improved the nutritional composition of emulsified sausages; they displayed a higher PUFA/SFA ratio and lower n-6/n-3 ratio due to their saturated fatty acids being replaced by poly-unsaturated fatty acids. Meanwhile, the oxidative stability of sausages was improved linearly, corresponding to the increased replacement ratio of MP112 emulsion. Our results show that mannoprotein-based emulsions could be used as potential fat alternatives in developing reduced-fat meat products.
Evaluation of the Addition of Yeast Mannoprotein to Oenococcus oeni Starter Cultures to Improve Wine Malolactic Fermentation
Malolactic fermentation (MLF) in wine is driven by the lactic acid bacterium Oenococcus oeni in most cases. Although this bacterium is resistant to wine stress conditions, it often faces difficulties completing MLF. Previous studies indicate that yeast mannoproteins may improve O. oeni growth and survival in wine. However, very little is known about this topic. This study evaluated the effect of the addition of mannoprotein extracts to culture media on O. oeni growth and its survival to stress conditions and MLF performance. Three commercial mannoprotein extracts were characterized in terms of polysaccharide and protein richness and were used for O. oeni culture media supplementation. The addition of mannoprotein extracts improved the survival of the two evaluated O. oeni strains, PSU-1 and VP41, after acid shock (pH 3.2) in comparison to that of the control. The transcriptional response of four genes involved in mannose metabolism was different depending on the strain, indicating the complexity of sugar metabolism in O. oeni. PSU-1 cells grown with two of the mannoprotein extracts performed faster MLF compared with the control condition, indicating that mannoprotein addition may improve the performance of O. oeni starter cultures, although this effect depends on the strain.
Spent Brewer’s Yeast Lysis Enables a Best Out of Waste Approach in the Beer Industry
Yeasts have emerged as an important resource of bioactive compounds, proteins and peptides, polysaccharides and oligosaccharides, vitamin B, and polyphenols. Hundreds of thousands of tons of spent brewer’s yeast with great biological value are produced globally by breweries every year. Hence, streamlining the practical application processes of the bioactive compounds recovered could close a loop in an important bioeconomy value-chain. Cell lysis is a crucial step in the recovery of bioactive compounds such as (glyco)proteins, vitamins, and polysaccharides from yeasts. Besides the soluble intracellular content rich in bioactive molecules, which is released by cell lysis, the yeast cell walls β-glucan, chitin, and mannoproteins present properties that make them good candidates for various applications such as functional food ingredients, dietary supplements, or plant biostimulants. This literature study provides an overview of the lysis methods used to valorize spent brewer’s yeast. The content of yeast extracts and yeast cell walls resulting from cellular disruption of spent brewer’s yeast are discussed in correlation with the biological activities of these fractions and resulting applications. This review highlights the need for a deeper investigation of molecular mechanisms to unleash the potential of spent brewer’s yeast extracts and cell walls to become an important source for a variety of bioactive compounds.