Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
7,243 result(s) for "mesoscale model"
Sort by:
A Comparative Study and Evaluation of Mixing-Height Estimation Based on Sodar-RASS, Ceilometer Data and Numerical Model Simulations
A comparative study and evaluation of mixing-layer height estimation was conducted, using data from remote sensing and in-situ instrumentation, radiosondes, synoptic analyses and model simulations. The data were collected during an experimental campaign conducted at the Athens International Airport, Greece, from 15 to 26 September 2007. Mixing-layer height from the sodar dataset was estimated taking into account the backscatter signal, temperature, Richardson number profiles and surface-based measurements, while for the ceilometer data, the optical attenuated aerosol backscatter intensity first derivative was utilized. Numerical simulations using the Penn State/NCAR MM5 numerical mesoscale model and the Weather Research and Forecast numerical model were also performed. Comparative results under different meteorological conditions (local flows, moderate to strong background flows) are presented and discussed. According to our results under moderate to strong winds the existing mechanical turbulence creates good signal conditions for the two remote systems leading to a good overall agreement between the two methodologies, while both models give reliable estimations of the mixing height. The sodar-RASS system is more suitable under low to moderate winds or when local flows are developed with weak stability, while the ceilometer system is more suitable for moderate to strong winds, which is associated with a homogeneous atmosphere and weaker low-level temperature inversions. In the models, the existing approach for atmospheric boundary-layer depth simulation usually provides higher compared to remote sensing values, especially during local flow events. An alternative approach for the estimation of mixing height by the models, the estimation and use of the diffusion coefficient profiles, is a promising methodology regarding the comparison with the sodar-RASS mixing-height estimations.
The September 2020 Wildfires over the Pacific Northwest
A series of major fires spread across eastern Washington and western Oregon starting on 7 September 2020, driven by strong easterly and northeasterly winds gusting to ~70 kt (1 kt ≈ 0.51 m s −1 ) at exposed locations. This event was associated with a high-amplitude upper-level ridge over the eastern Pacific and a mobile trough that moved southward on its eastern flank. The synoptic environment during the event was highly unusual, with the easterly 925-hPa wind speeds at Salem, Oregon, being unprecedented for the August–September period. The September 2020 wildfires produced dense smoke that initially moved westward over the Willamette Valley and eventually covered the region. As a result, air quality rapidly degraded to hazardous levels, representing the worst air quality period of recent decades. High-resolution numerical simulations using the WRF Model indicated the importance of a high-amplitude mountain wave in producing strong easterly winds over western Oregon. The dead fuel moisture levels over eastern Washington before the fires were typical for that time of the year. Along the western slopes of the Oregon Cascades, where the fuels largely comprise a dense conifer forest with understory vegetation, fire weather indices were lower (moister) than normal during the early part of the summer, but transitioned to above-normal (drier) values during August, with a spike to record values in early September coincident with the strong easterly winds. Forecast guidance was highly accurate for both the Washington and Oregon wildfire events. Analyses of climatological data and fuel indices did not suggest that unusual preexisting climatic conditions were major drivers of the September 2020 Northwest wildfires.
Heavy Rainfall Associated with Double Low-Level Jets over Southern China. Part II: Convection Initiation
Heavy rainfall that occurred at the south coast of China on 10–11 May 2014 was associated with a synoptic-system-related low-level jet (SLLJ) and a boundary layer jet (BLJ). To clarify the role of the double low-level jets in convection initiation (CI), we perform convective-permitting simulations using a nonhydrostatic mesoscale model. The simulations reproduce the occurrence location and mesoscale evolution of new convective cells as well as their small-scale wavelike structures at the elevated layers, which are generally consistent with radar observations despite some differences in their orientation. The nighttime BLJ over the northern South China Sea strengthens the convergence at ~950 hPa near the coast where the BLJ’s northern terminus reaches the coastal terrain. Meanwhile, the SLLJ to the south of the inland cold front provides divergence at ~700 hPa near the SLLJ’s entrance region. Such low-level convergence and midlevel divergence collectively produce strong mesoscale lifting for CI at the coast. In addition to the enhanced mesoscale lifting, the double low-level jets also provide favorable conditions for the superimposed small-scale disturbances that can serve as effective moistening mechanisms of the lower troposphere during CI. In a sensitivity experiment with coastal terrain removed, CI still occurs near the coast but is delayed and weaker compared to the control run. This latter experiment suggests that double low-level jets and their coupling indeed exert key effects on CI, while the BLJ colliding with terrain may enhance coastal convergence for amplifying CI. These findings provide new insights into the occurrence of coastal heavy rainfall in the warm sector far ahead of the fronts.
Assessment of LULC and climate change on the hydrology of Ashti Catchment, India using VIC model
The assessment of land use land cover (LULC) and climate change over the hydrology of a catchment has become inevitable and is an essential aspect to understand the water resources-related problems within the catchment. For large catchments, mesoscale models such as variable infiltration capacity (VIC) model are required for appropriate hydrological assessment. In this study, Ashti Catchment (sub-catchment of Godavari Basin in India) is considered as a case study to evaluate the impacts of LULC changes and rainfall trends on the hydrological variables using VIC model. The land cover data and rainfall trends for 40 years (1971–2010) were used as driving input parameters to simulate the hydrological changes over the Ashti Catchment and the results are compared with observed runoff. The good agreement between observed and simulated streamflows emphasises that the VIC model is able to evaluate the hydrological changes within the major catchment, satisfactorily. Further, the study shows that evapotranspiration is predominantly governed by the vegetation classes. Evapotranspiration is higher for the forest cover as compared to the evapotranspiration for shrubland/grassland, as the trees with deeper roots draws the soil moisture from the deeper soil layers. The results show that the spatial extent of change in rainfall trends is small as compared to the total catchment. The hydrological response of the catchment shows that small changes in monsoon rainfall predominantly contribute to runoff, which results in higher changes in runoff as the potential evapotranspiration within the catchments is achieved. The study also emphasises that the hydrological implications of climate change are not very significant on the Ashti Catchment, during the last 40 years (1971–2010).
Growth of Mesoscale Convective Systems in Observations and a Seasonal Convection-Permitting Simulation over Argentina
A 6.5-month, convection-permitting simulation is conducted over Argentina covering the Remote Sensing of Electrification, Lightning, And Mesoscale/Microscale Processes with Adaptive Ground Observations and Clouds, Aerosols, and Complex Terrain Interactions (RELAMPAGO-CACTI) field campaign and is compared with observations to evaluate mesoscale convective system (MCS) growth prediction. Observed and simulated MCSs are consistently identified, tracked, and separated into growth, mature, and decay stages using top-of-the-atmosphere infrared brightness temperature and surface rainfall. Simulated MCS number, lifetime, seasonal and diurnal cycles, and various cloud-shield characteristics including growth rate are similar to those observed. However, the simulation produces smaller rainfall areas, greater proportions of heavy rainfall, and faster system propagations. Rainfall area is significantly underestimated for long-lived MCSs but not for shorter-lived MCSs, and rain rates are always overestimated. These differences result from a combination of model and satellite retrieval biases, in which simulated MCS rain rates are shifted from light to heavy, while satellite-retrieved rainfall is too frequent relative to rain gauge estimates. However, the simulation reproduces satellite-retrieved MCS cloud-shield evolution well, supporting its usage to examine environmental controls on MCS growth. MCS initiation locations are associated with removal of convective inhibition more than maximized low-level moisture convergence or instability. Rapid growth is associated with a stronger upper-level jet (ULJ) and a deeper northwestern Argentinean low that causes a stronger northerly low-level jet (LLJ), increasing heat and moisture fluxes, low-level vertical wind shear, baroclinicity, and instability. Sustained growth corresponds to similar LLJ, baroclinicity, and instability conditions but is less sensitive to the ULJ, large-scale vertical motion, or low-level shear. Growth sustenance controls MCS maximum extent more than growth rate.
Review of Mesoscale Wind-Farm Parametrizations and Their Applications
With the ongoing expansion of wind energy onshore and offshore, large-scale wind-farm-flow effects in a temporally- and spatially-heterogeneous atmosphere become increasingly relevant. Mesoscale models equipped with a wind-farm parametrization (WFP) can be used to study these effects. Here, we conduct a systematic literature review on the existing WFPs for mesoscale models, their applications and findings. In total, 10 different explicit WFPs have been identified. They differ in their description of the turbine-induced forces, and turbulence-kinetic-energy production. The WFPs have been validated for different target parameters through measurements and large-eddy simulations. The performance of the WFP depends considerably on the ability of the mesoscale model to simulate the background meteorological conditions correctly as well as on the model set-up. The different WFPs have been applied to both onshore and offshore environments around the world. Here, we summarize their findings regarding (1) the characterizations of wind-farm-flow effects, (2) the environmental impact of wind farms, and (3) the implication for wind-energy planning. Since wind-farm wakes can last for several tens of kilometres downstream depending on stability, surface roughness and terrain, neighbouring wind farms need to be taken into account for regional planning of wind energy. Their environmental impact is mostly confined to areas close to the farm. The review suggests future work should include benchmark-type validation studies with long-term measurements, further developments of mesoscale model physics and WFPs, and more interactions between the mesoscale and microscale community.
A North American Hourly Assimilation and Model Forecast Cycle: The Rapid Refresh
The Rapid Refresh (RAP), an hourly updated assimilation and model forecast system, replaced the Rapid Update Cycle (RUC) as an operational regional analysis and forecast system among the suite of models at the NOAA/National Centers for Environmental Prediction (NCEP) in 2012. The need for an effective hourly updated assimilation and modeling system for the United States for situational awareness and related decision-making has continued to increase for various applications including aviation (and transportation in general), severe weather, and energy. The RAP is distinct from the previous RUC in three primary aspects: a larger geographical domain (covering North America), use of the community-based Advanced Research version of the Weather Research and Forecasting (WRF) Model (ARW) replacing the RUC forecast model, and use of the Gridpoint Statistical Interpolation analysis system (GSI) instead of the RUC three-dimensional variational data assimilation (3DVar). As part of the RAP development, modifications have been made to the community ARW model (especially in model physics) and GSI assimilation systems, some based on previous model and assimilation design innovations developed initially with the RUC. Upper-air comparison is included for forecast verification against both rawinsondes and aircraft reports, the latter allowing hourly verification. In general, the RAP produces superior forecasts to those from the RUC, and its skill has continued to increase from 2012 up to RAP version 3 as of 2015. In addition, the RAP can improve on persistence forecasts for the 1–3-h forecast range for surface, upper-air, and ceiling forecasts.
A Review of Planetary Boundary Layer Parameterization Schemes and Their Sensitivity in Simulating Southeastern U.S. Cold Season Severe Weather Environments
The representation of turbulent mixing within the lower troposphere is needed to accurately portray the vertical thermodynamic and kinematic profiles of the atmosphere in mesoscale model forecasts. For mesoscale models, turbulence is mostly a subgrid-scale process, but its presence in the planetary boundary layer (PBL) can directly modulate a simulation’s depiction of mass fields relevant for forecast problems. The primary goal of this work is to review the various parameterization schemes that the Weather Research and Forecasting Model employs in its depiction of turbulent mixing (PBL schemes) in general, and is followed by an application to a severe weather environment. Each scheme represents mixing on a local and/or nonlocal basis. Local schemes only consider immediately adjacent vertical levels in the model, whereas nonlocal schemes can consider a deeper layer covering multiple levels in representing the effects of vertical mixing through the PBL. As an application, a pair of cold season severe weather events that occurred in the southeastern United States are examined. Such cases highlight the ambiguities of classically defined PBL schemes in a cold season severe weather environment, though characteristics of the PBL schemes are apparent in this case. Low-level lapse rates and storm-relative helicity are typically steeper and slightly smaller for nonlocal than local schemes, respectively. Nonlocal mixing is necessary to more accurately forecast the lower-tropospheric lapse rates within the warm sector of these events. While all schemes yield overestimations of mixed-layer convective available potential energy (MLCAPE), nonlocal schemes more strongly overestimate MLCAPE than do local schemes.
Local and Mesoscale Impacts of Wind Farms as Parameterized in a Mesoscale NWP Model
A new wind farm parameterization has been developed for the mesoscale numerical weather prediction model, the Weather Research and Forecasting model (WRF). The effects of wind turbines are represented by imposing a momentum sink on the mean flow; transferring kinetic energy into electricity and turbulent kinetic energy (TKE). The parameterization improves upon previous models, basing the atmospheric drag of turbines on the thrust coefficient of a modern commercial turbine. In addition, the source of TKE varies with wind speed, reflecting the amount of energy extracted from the atmosphere by the turbines that does not produce electrical energy. Analyses of idealized simulations of a large offshore wind farm are presented to highlight the perturbation induced by the wind farm and its interaction with the atmospheric boundary layer (BL). A wind speed deficit extended throughout the depth of the neutral boundary layer, above and downstream from the farm, with a long wake of 60-km e-folding distance. Within the farm the wind speed deficit reached a maximum reduction of 16%. A maximum increase of TKE, by nearly a factor of 7, was located within the farm. The increase in TKE extended to the top of the BL above the farm due to vertical transport and wind shear, significantly enhancing turbulent momentum fluxes. The TKE increased by a factor of 2 near the surface within the farm. Near-surface winds accelerated by up to 11%. These results are consistent with the few results available from observations and large-eddy simulations, indicating this parameterization provides a reasonable means of exploring potential downwind impacts of large wind farms.