Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
2,171
result(s) for
"methanogens"
Sort by:
Differences of methanogenesis between mesophilic and thermophilic in situ biogas-upgrading systems by hydrogen addition
by
Zhu, Xianpu
,
Cao, Qin
,
Li, Dong
in
acetogens
,
Biochemistry
,
Bioenergy/Biofuels/Biochemicals - Original Paper
2019
Abstract
To investigate the differences in microbial community structure between mesophilic and thermophilic in situ biogas-upgrading systems by H2 addition, two reactors (35 °C and 55 °C) were run for four stages according to different H2 addition rates (H2/CO2 of 0:1, 1:1, and 4:1) and mixing mode (intermittent and continuous). 16S rRNA gene-sequencing technology was applied to analyze microbial community structure. The results showed that the temperature is a crucial factor in impacting succession of microbial community structure and the H2 utilization pathway. For mesophilic digestion, most of added H2 was consumed indirectly by the combination of homoacetogens and strict aceticlastic methanogens. In the thermophilic system, most of added H2 may be used for microbial cell growth, and part of H2 was utilized directly by strict hydrogenotrophic methanogens and facultative aceticlastic methanogens. Continuous stirring was harmful to the stabilization of mesophilic system, but not to the thermophilic one.
Journal Article
Diversity of Methanogens in Animals’ Gut
by
Davoust, Bernard
,
Drancourt, Michel
,
Guindo, Cheick Oumar
in
Bacteriology
,
Cardiology and cardiovascular system
,
cats
2020
Methanogens are members of anaerobe microbiota of the digestive tract of mammals, including humans. However, the sources, modes of acquisition, and dynamics of digestive tract methanogens remain poorly investigated. In this study, we aimed to expand the spectrum of animals that could be sources of methanogens for humans by exploring methanogen carriage in animals. We used real-time PCR, PCR-sequencing, and multispacer sequence typing to investigate the presence of methanogens in 407 fecal specimens collected from nine different mammalian species investigated here. While all the negative controls remained negative, we obtained by PCR-sequencing seven different species of methanogens, of which three (Methanobrevibacter smithii, Methanobrevibacter millerae and Methanomassiliicoccus luminyensis) are known to be part of the methanogens present in the human digestive tract. M. smithii was found in 24 cases, including 12/24 (50%) in pigs, 6/24 (25%) in dogs, 4/24 (16.66%) in cats, and 1/24 (4.16%) in both sheep and horses. Genotyping these 24 M. smithii revealed five different genotypes, all known in humans. Our results are fairly representative of the methanogen community present in the digestive tract of certain animals domesticated by humans, and other future studies must be done to try to cultivate methanogens here detected by molecular biology to better understand the dynamics of methanogens in animals and also the likely acquisition of methanogens in humans through direct contact with these animals or through consumption of the meat and/or milk of certain animals, in particular cows.
Journal Article
Regulation of the methanogenesis pathways by hydrogen at transcriptomic level in time
2023
The biomethane formation from 4 H2 + CO2 by pure cultures of two methanogens, Methanocaldococcus fervens and Methanobacterium thermophilum, has been studied. The goal of the study was to understand the regulation of the enzymatic steps associated with biomethane biosynthesis by H2, using metagenomic, pan-genomic, and transcriptomic approaches. Methanogenesis in the autotrophic methanogen M. fervens could be easily “switched off” and “switched on” by H2/CO2 within about an hour. In contrast, the heterotrophic methanogen M. thermophilum was practically insensitive to the addition of the H2/CO2 trigger although this methanogen also converted H2/CO2 to CH4. From practical points of view, the regulatory function of H2/CO2 suggests that in the power-to-gas (P2G) renewable excess electricity conversion and storage systems, the composition of the biomethane-generating methanogenic community is essential for sustainable operation. In addition to managing the specific hydrogenotrophic methanogenesis biochemistry, H2/CO2 affected several, apparently unrelated, metabolic pathways. The redox-regulated overall biochemistry and symbiotic relationships in the methanogenic communities should be explored in order to make the P2G technology more efficient.Key points • Hydrogenotrophic methanogens may respond distinctly to H2/CO2 in bio-CH4 formation.• H2/CO2 can also activate metabolic routes, which are apparently unrelated to methanogenesis.• Sustainable conversion of the fluctuating renewable electricity to bio-CH4 is an option.
Journal Article
Structure, variation, and assembly of the root-associated microbiomes of rice
by
Santos-Medellín, Christian
,
Eisen, Jonathan A.
,
Podishetty, Natraj Kumar
in
Archaea
,
Bacteria - growth & development
,
Biological Sciences
2015
Plants depend upon beneficial interactions between roots and microbes for nutrient availability, growth promotion, and disease suppression. High-throughput sequencing approaches have provided recent insights into root microbiomes, but our current understanding is still limited relative to animal microbiomes. Here we present a detailed characterization of the root-associated microbiomes of the crop plant rice by deep sequencing, using plants grown under controlled conditions as well as field cultivation at multiple sites. The spatial resolution of the study distinguished three root-associated compartments, the endosphere (root interior), rhizoplane (root surface), and rhizosphere (soil close to the root surface), each of which was found to harbor a distinct microbiome. Under controlled greenhouse conditions, microbiome composition varied with soil source and genotype. In field conditions, geographical location and cultivation practice, namely organic vs. conventional, were factors contributing to microbiome variation. Rice cultivation is a major source of global methane emissions, and methanogenic archaea could be detected in all spatial compartments of field-grown rice. The depth and scale of this study were used to build coabundance networks that revealed potential microbial consortia, some of which were involved in methane cycling. Dynamic changes observed during microbiome acquisition, as well as steady-state compositions of spatial compartments, support a multistep model for root microbiome assembly from soil wherein the rhizoplane plays a selective gating role. Similarities in the distribution of phyla in the root microbiomes of rice and other plants suggest that conclusions derived from this study might be generally applicable to land plants.
Journal Article
Human gut microbiota in obesity and after gastric bypass
2009
Recent evidence suggests that the microbial community in the human intestine may play an important role in the pathogenesis of obesity. We examined 184,094 sequences of microbial 16S rRNA genes from PCR amplicons by using the 454 pyrosequencing technology to compare the microbial community structures of 9 individuals, 3 in each of the categories of normal weight, morbidly obese, and post-gastric-bypass surgery. Phylogenetic analysis demonstrated that although the Bacteria in the human intestinal community were highly diverse, they fell mainly into 6 bacterial divisions that had distinct differences in the 3 study groups. Specifically, Firmicutes were dominant in normal-weight and obese individuals but significantly decreased in post-gastric-bypass individuals, who had a proportional increase of GAMMAPROTEOBACTERIA: Numbers of the H₂-producing Prevotellaceae were highly enriched in the obese individuals. Unlike the highly diverse Bacteria, the Archaea comprised mainly members of the order Methanobacteriales, which are H₂-oxidizing methanogens. Using real-time PCR, we detected significantly higher numbers of H₂-utilizing methanogenic Archaea in obese individuals than in normal-weight or post-gastric-bypass individuals. The coexistence of H₂-producing bacteria with relatively high numbers of H₂-utilizing methanogenic Archaea in the gastrointestinal tract of obese individuals leads to the hypothesis that interspecies H₂ transfer between bacterial and archaeal species is an important mechanism for increasing energy uptake by the human large intestine in obese persons. The large bacterial population shift seen in the post-gastric-bypass individuals may reflect the double impact of the gut alteration caused by the surgical procedure and the consequent changes in food ingestion and digestion.
Journal Article
Autocatalytic chemical networks at the origin of metabolism
2020
Modern cells embody metabolic networks containing thousands of elements and form autocatalytic sets of molecules that produce copies of themselves. How the first self-sustaining metabolic networks arose at life's origin is a major open question. Autocatalytic sets smaller than metabolic networks were proposed as transitory intermediates at the origin of life, but evidence for their role in prebiotic evolution is lacking. Here, we identify reflexively autocatalytic food-generated networks (RAFs)—self-sustaining networks that collectively catalyse all their reactions—embedded within microbial metabolism. RAFs in the metabolism of ancient anaerobic autotrophs that live from H 2 and CO 2 provided with small-molecule catalysts generate acetyl-CoA as well as amino acids and bases, the monomeric components of protein and RNA, but amino acids and bases without organic catalysts do not generate metabolic RAFs. This suggests that RAFs identify attributes of biochemical origins conserved in metabolic networks. RAFs are consistent with an autotrophic origin of metabolism and furthermore indicate that autocatalytic chemical networks preceded proteins and RNA in evolution. RAFs uncover intermediate stages in the emergence of metabolic networks, narrowing the gaps between early Earth chemistry and life.
Journal Article
Rumen methanogens and mitigation of methane emission by anti-methanogenic compounds and substances
2017
Methanogenic archaea reside primarily in the rumen and the lower segments of the intestines of ruminants, where they utilize the reducing equivalents derived from rumen fermentation to reduce carbon dioxide, formic acid, or methylamines to methane(CH_4). Research on methanogens in the rumen has attracted great interest in the last decade because CH_4 emission from ruminants contributes to global greenhouse gas emission and represents a loss of feed energy. Some DNA-based phylogenetic studies have depicted a diverse and dynamic community of methanogens in the rumen. In the past decade, researchers have focused on elucidating the underpinning that determines and affects the diversity, composition, structure, and dynamics of methanogen community of the rumen. Concurrently, many researchers have attempted to develop and evaluate interventions to mitigate enteric CH_4 emission. Although much work has been done using plant secondary metabolites, other approaches such as using nitrate and 3-nitrooxy propanol have also yielded promising results. Most of these antimethanogenic compounds or substances often show inconsistent results among studies and also lead to adverse effects on feed intake and digestion and other aspects of rumen fermentation when fed at doses high enough to achieve effective mitigation. This review provides a brief overview of the rumen methanogens and then an appraisal of most of the antimethanogenic compounds and substances that have been evaluated both in vitro and in vivo. Knowledge gaps and future research needs are also discussed with a focus on methanogens and methane mitigation.
Journal Article
Micro-aeration: an attractive strategy to facilitate anaerobic digestion
by
Guo, Rongbo
,
Lian, Shujuan
,
Fu, Shanfei
in
Acidification
,
Aeration
,
Alternative energy sources
2023
Micro-aeration can facilitate anaerobic digestion (AD) by regulating microbial communities and promoting the growth of facultative taxa, thereby increasing methane yield and stabilizing the AD process. Additionally, micro-aeration contributes to hydrogen sulfide stripping by oxidization to produce molecular sulfur or sulfuric acid. Although micro-aeration can positively affect AD, it must be strictly regulated to maintain an overall anaerobic environment that permits anaerobic microorganisms to thrive. Even so, obligate anaerobes, especially methanogens, could suffer from oxidative stress during micro-aeration. This review describes the applications of micro-aeration in AD and examines the cutting-edge advances in how methanogens survive under oxygen stress. Moreover, barriers and corresponding solutions are proposed to move micro-aeration technology closer to application at scale.
Micro-aeration represents a promising strategy to facilitate anaerobic digestion (AD), as it enhances hydrolysis, improves methane yield, oxidizes specific pollutants, and thereby overall improves AD.Low oxygen solubility in water, rapid consumption of dissolved oxygen by facultative microbes, the formation of microbial aggregates, and the intrinsic tolerance of some methanogenic species to oxygen are suggested as potential mechanisms for unimpaired AD process in response to oxygen exposure.Fundamental understanding of anaerobic microorganisms’ tolerance to oxygen stress and long-term pilot scale tests of effects of micro-aeration on AD are needed in order to move micro-aeration technology closer to applications.
Journal Article
Microbiome-informed study of the mechanistic basis of methane inhibition by Asparagopsis taxiformis in dairy cattle
by
Melgar, Audino
,
Wasson, Derek
,
Bender, Joseph S.
in
Animal Feed - analysis
,
Animals
,
Archaea - classification
2024
Livestock emits copious quantities of methane, a major constituent of the greenhouse gases currently driving climate change. Methanogens within the bovine rumen produce methane during the breakdown of feed. While the red seaweed Asparagopsis taxiformis (AT) can significantly reduce methane emissions when fed to cows, its effects appear short-lived. This study revealed that the effective reduction of methane emissions by AT was accompanied by the near-total elimination of methane-generating Methanosphaera . However, Methanosphaera populations subsequently rebounded due to their ability to inactivate bromoform, a major inhibitor of methane formation found in AT. This study presents novel findings on the contribution of Methanosphaera to ruminal methanogenesis, the mode of action of AT, and the possibility for complementing different strategies to effectively curb methane emissions.
Journal Article
Interrogating the viral dark matter of the rumen ecosystem with a global virome database
by
Sullivan, Matthew B.
,
Li, Zongjun
,
Somasundaram, Sripoorna
in
38/44
,
631/326/1321
,
631/326/596/2142
2023
The diverse rumen virome can modulate the rumen microbiome, but it remains largely unexplored. Here, we mine 975 published rumen metagenomes for viral sequences, create a global rumen virome database (RVD), and analyze the rumen virome for diversity, virus-host linkages, and potential roles in affecting rumen functions. Containing 397,180 species-level viral operational taxonomic units (vOTUs), RVD substantially increases the detection rate of rumen viruses from metagenomes compared with IMG/VR V3. Most of the classified vOTUs belong to
Caudovirales
, differing from those found in the human gut. The rumen virome is predicted to infect the core rumen microbiome, including fiber degraders and methanogens, carries diverse auxiliary metabolic genes, and thus likely impacts the rumen ecosystem in both a top-down and a bottom-up manner. RVD and the findings provide useful resources and a baseline framework for future research to investigate how viruses may impact the rumen ecosystem and digestive physiology.
Here, by mining 975 published rumen metagenomes for viral sequences, the authors construct a global rumen virome database (RVD), providing a resource for characterization of viral diversity, virus-host linkages, and potential roles in affecting rumen functions.
Journal Article