Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
88
result(s) for
"microRNA-124"
Sort by:
Exosomal lncRNA ZFAS1 regulates esophageal squamous cell carcinoma cell proliferation, invasion, migration and apoptosis via microRNA-124/STAT3 axis
2019
Background
In recent years, long non-coding RNAs (lncRNAs) are of great importance in development of different types of tumors, while the function of lncRNA ZFAS1 is rarely discussed in esophageal squamous cell carcinoma (ESCC). Therefore, we performed this study to explore the expression of exosomal lncRNA ZFAS1 and its molecular mechanism on ESCC progression.
Methods
Expression of ZFAS1 and miR-124 in ESCC tissues was detected. LncRNA ZFAS1 was silenced to detect its function in the biological functions of ESCC cells. A stable donor and recipient culture model was established. Eca109 cells transfected with overexpressed and low expressed ZFAS1 plasmid and miR-124 inhibitor labeled by Cy3 were the donor cells, and then co-cultured with recipient cells to observe the transmission of Cy3-ZFAS1 between donor cells and recipient cells. The changes of cell proliferation, apoptosis, invasion, and migration in recipient cells were detected. The in vivo experiment was conducted for verifying the in vitro results.
Results
LncRNA ZFAS1 was upregulated and miR-124 was down-regulated in ESCC tissues. Silencing of ZFAS1 contributed to suppressed proliferation, migration, invasion and tumor growth in vitro and induced apoptosis of ESCC cells. LncRNA ZFAS1 was considered to be a competing endogenous RNA to regulate miR-124, thereby elevating STAT3 expression. Exosomes shuttled ZFAS1 stimulated proliferation, migration and invasion of ESCC cells and restricted their apoptosis with increased STAT3 and declined miR-124. Furthermore, in vivo experiment suggested that elevated ZFAS1-exo promoted tumor growth in nude mice.
Conclusion
This study highlights that exosomal ZFAS1 promotes the proliferation, migration and invasion of ESCC cells and inhibits their apoptosis by upregulating STAT3 and downregulating miR-124, thereby resulting in the development of tumorigenesis of ESCC.
Journal Article
EIF4A3-induced circular RNA MMP9 (circMMP9) acts as a sponge of miR-124 and promotes glioblastoma multiforme cell tumorigenesis
2018
Background
Circular RNAs (circRNAs) have been found to play critical roles in the development and progression of various cancers. However, little is known about the effects of the circular RNA network on glioblastoma multiforme (GBM).
Methods
A microarray was used to screen circRNA expression in GBM. Quantitative real-time PCR was used to detect the expression of circMMP9. GBM cells were transfected with a circMMP9 overexpression vector or siRNA, and cell proliferation, migration and invasion, as well as tumorigenesis in nude mice, were assessed to examine the effect of circMMP9 in GBM. Biotin-coupled miRNA capture, fluorescence in situ hybridization and luciferase reporter assays were conducted to confirm the relationship between circMMP9 and miR-124.
Results
In this study, we screened differentially expressed circRNAs and identified circMMP9 in GBM. We found that circMMP9 acted as an oncogene, was upregulated in GBM and promoted the proliferation, migration and invasion abilities of GBM cells. Next, we verified that circMMP9 served as a sponge that directly targeted miR-124; circMMP9 accelerated GBM cell proliferation, migration and invasion by targeting miR-124. Furthermore, we found that cyclin-dependent kinase 4 (CDK4) and aurora kinase A (AURKA) were involved in circMMP9/miR-124 axis-induced GBM tumorigenesis. Finally, we found that eukaryotic initiation factor 4A3 (eIF4A3), which binds to the MMP9 mRNA transcript, induced circMMP9 cyclization and increased circMMP9 expression in GBM.
Conclusions
Our findings indicate that eIF4A3-induced circMMP9 is an important underlying mechanism in GBM cell proliferation, invasion and metastasis through modulation of the miR-124 signaling pathway, which could provide pivotal potential therapeutic targets for the treatment of GBM.
Graphical abstract
Journal Article
The Potential Role of MicroRNA-124 in Cerebral Ischemia Injury
by
Du, Lipeng
,
Deng, Yihui
,
Liu, Xiaolu
in
Alzheimer Disease - metabolism
,
Alzheimer Disease - pathology
,
Animals
2019
Cerebral ischemia injury, the leading cause of morbidity and mortality worldwide, initiates sequential molecular and cellular pathologies that underlie ischemic encephalopathy (IE), such as ischemic stroke, Alzheimer disease (AD), Parkinson’s disease (PD), epilepsy, etc. Targeted therapeutic treatments are urgently needed to tackle the pathological processes implicated in these neurological diseases. Recently, accumulating studies demonstrate that microRNA-124 (miR-124), the most abundant miRNA in brain tissue, is aberrant in peripheral blood and brain vascular endothelial cells following cerebral ischemia. Importantly, miR-124 regulates a variety of pathophysiological processes that are involved in the pathogenesis of age-related IE. However, the role of miR-124 has not been systematically illustrated. Paradoxically, miR-124 exerts beneficial effects in the age-related IE via regulating autophagy, neuroinflammation, oxidative stress, neuronal excitability, neurodifferentiation, Aβ deposition, and hyperphosphorylation of tau protein, while it may play a dual role via regulating apoptosis and exerts detrimental effects on synaptic plasticity and axonal growth. In the present review, we thus focus on the paradoxical roles of miR-124 in age-related IE, as well as the underlying mechanisms. A great understanding of the effects of miR-124 on the hypoxic–ischemic brain will open new avenues for therapeutic approaches to protect against cerebral ischemia injury.
Journal Article
MicroRNA-124 regulates the expression of MEKK3 in the inflammatory pathogenesis of Parkinson’s disease
2018
Background
Parkinson’s disease (PD) is the most prevalent neurodegenerative disorder that is characterised by selective loss of midbrain dopaminergic (DA) neurons. Chronic inflammation of the central nervous system is mediated by microglial cells and plays a critical role in the pathological progression of PD. Brain-specific microRNA-124 (miR-124) expression is significantly downregulated in lipopolysaccharide (LPS)-treated BV2 cells and in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) model of PD. However, whether abnormal miR-124 expression could regulate the activation of microglia remains poorly understood.
Methods
BV2 cells were activated by exposure to LPS, and the expression levels of miR-124, mitogen-activated protein kinase kinase kinase 3 (MEKK3), and the nuclear factor of kappaB (NF-κB) p-p65 were analysed. Over-expression and knockdown studies of miR-124 were performed to observe the effects on MEKK3/NF-κB signalling pathways, and the induction of pro-inflammatory and neurotoxic factors was assessed. In addition, a luciferase reporter assay was conducted to confirm whether MEKK3 is a direct target of miR-124. Meanwhile, production of miR-124, MEKK3, and p-p65; midbrain DA neuronal death; or activation of microglia were analysed when treated with or without miR-124 in the MPTP-induced model of PD.
Results
We found that the knockdown of MEKK3 could inhibit the activation of microglia by regulating NF-κB expression. Over-expression of miR-124 could effectively attenuate the LPS-induced expression of pro-inflammatory cytokines and promote the secretion of neuroprotective factors. We also first identified a unique role of miR-124 in mediating the microglial inflammatory response by targeting MEKK3/NF-κB signalling pathways. In the microglial culture supernatant (MCS) transfer model, over-expression of the miR-124 or knockdown of MEKK3 in BV2 cells prevented SH-SY5Y from apoptosis and death. Moreover, MEKK3 and p-p65 were abundantly expressed in the midbrain. Furthermore, their expression levels increased and microglial activation was observed in the MPTP-induced model of PD. In addition, exogenous delivery of miR-124 could suppress MEKK3 and p-p65 expression and attenuate the activation of microglia in the substantia nigra pars compacta of MPTP-treated mice. miR-124 also could prevent MPTP-dependent apoptotic midbrain DA cell death in a MPTP-induced PD model.
Conclusions
Taken together, our data suggest that miR-124 can inhibit neuroinflammation in the development of PD by regulating the MEKK3/NF-κB signalling pathways and implicate miR-124 as a potential therapeutic target for regulating the inflammatory response in PD.
Journal Article
An updated role of microRNA-124 in central nervous system disorders: a review
2015
MicroRNA-124 (miR-124) is the most abundant miRNA in the brain. Biogenesis of miR-124 displays specific temporal and spatial profiles in various cell and tissue types and affects a broad spectrum of biological functions in the central nervous system (CNS). Recently, the link between dysregulation of miR-124 and CNS disorders, such as neurodegeneration, CNS stress, neuroimmune disorders, stroke, and brain tumors, has become evident. Here, we provide an overview of the specific molecular function of miR-124 in the CNS and a revealing insight for the therapeutic potential of miR-124 in the treatment of human CNS diseases.
Journal Article
Function of microRNA-124 in the pathogenesis of cancer (Review)
2024
Non-coding RNAs with a length of 22-24 nt are known as microRNAs (miRNAs or miRs), which are critical regulators of protein translation. Over the past 10 years, the roles of miRNAs have been extensively investigated in several human cancer types. There is evidence to indicate that miRNAs regulate gene expression by concentrating on a number of substances that have an impact on the physiology and development of cancer cells. Thus, miRNAs as regarded as effective targets for further studies on the design of novel therapeutic strategies. Hepatocellular carcinoma, breast, prostate, and ovarian cancer are only a few of the cancers that miR-124 suppresses. Furthermore, it has been shown that miR-124 is linked to the development and aggressive spread of malignancies. The aim of the present review was to clarify and highlight the role of miR-124 in the development and progression of cancer, emphasizing recent research illustrating how miR-124 has been used as a therapeutic agent against cancer, as well as the diagnostic potential, regulatory mechanisms and clinical application of miR-124.
Journal Article
MicroRNA-124: A Key Player in Microglia-Mediated Inflammation in Neurological Diseases
2021
Neurological disorders are mainly characterized by progressive neuron loss and neurological deterioration, which cause human disability and death. However, many types of neurological disorders have similar pathological mechanisms, including the neuroinflammatory response. Various microRNAs (miRs), such as miR-21, miR-124, miR-146a, and miR-132 were recently shown to affect a broad spectrum of biological functions in the central nervous system (CNS). Microglia are innate immune cells with important roles in the physiological and pathological activities of the CNS. Recently, abnormal expression of miR-124 was shown to be associated with the occurrence and development of various diseases in CNS via regulating microglia function. In addition, miR-124 is a promising biomarker and therapeutic target. Studies on the role of miR-124 in regulating microglia function involved in pathogenesis of neurological disorders at different stages will provide new ideas for the use of miR-124 as a therapeutic target for different CNS diseases.
Journal Article
CX3CL1/CX3CR1 axis attenuates early brain injury via promoting the delivery of exosomal microRNA-124 from neuron to microglia after subarachnoid hemorrhage
by
Wang, Yang
,
Wu, Jiang
,
Shen, Haitao
in
Biomedical and Life Sciences
,
Biomedicine
,
Brain cancer
2020
Background
Microglial activation-mediated neuroinflammation is a major contributor to early brain injury (EBI) after subarachnoid hemorrhage (SAH). MicroRNA-124 (miR-124) is the most abundant miRNAs in the central nervous system (CNS) and plays a vital role in microglial activation by targeting protein CCAAT-enhancer-binding protein α (C/EBPα). It has been reported that the CX3CL1/CX3CR1 axis is involved in the delivery of miR-124 from neurons to microglia.
Methods
An experimental rat SAH model was established by injecting autologous arterial blood into the prechiasmatic cistern, and cultured primary neurons and microglia were exposed to oxyhemoglobin to mimic SAH in vitro. We additionally exploited specific expression plasmids encoding CX3CL1 and CX3CR1.
Results
We observed significant decreases in CX3CL1 and CX3CR1 in the brain tissues of SAH patients. We also observed decreases in the levels of CX3CL1 in neurons and CX3CR1 in microglia after SAH in rats. Moreover, microglia exhibited an activated phenotype with macrophage-like morphology and high levels of CD45 and major histocompatibility complex (MHC) class II after SAH. After overexpression of CX3CL1/CX3CR1, the level of CD45 and MHC class II and the release of inflammatory factors tumor necrosis factor α, interleukin 1α and complement 1q were significantly decreased. There was also increased neuronal degeneration and behavior dysfunction after SAH, both of which were inhibited by CX3CL1/CX3CR1 overexpression. Additionally, we found that the delivery of exosomal miR-124 from neurons to microglia was significantly reduced after SAH, accompanied by an increase in C/EBPα expression, and was inhibited by CX3CL1/CX3CR1 overexpression. In conclusion, the CX3CL1/CX3CR1 axis may play protective roles after SAH by promoting the delivery of exosomal miR-124 to microglia and attenuate microglial activation and neuroinflammation.
Conclusions
CX3CL1/CX3CR1 axis may be a potential intervention target for the inhibition of SAH-induced EBI by promoting exosome transport of miR-124 to microglia.
Journal Article
The putative tumour suppressor microRNA-124 modulates hepatocellular carcinoma cell aggressiveness by repressing ROCK2 and EZH2
by
Zheng, Fang
,
Liu, Yan-Hui
,
Chen, Shu-Peng
in
Aggressiveness
,
Animals
,
Biological and medical sciences
2012
BackgroundRecent profile studies of microRNA (miRNA) expression have documented a deregulation of miRNA (miR-124) in hepatocellular carcinoma (HCC).ObjectiveTo determine the status of miR-124 expression and its underlying mechanisms in the pathogenesis of HCC.MethodsThe expression levels of miR-124 were first examined in HCC cell lines and tumour tissues by real-time PCR. The in vitro and in vivo functional effect of miR-124 was examined further. A luciferase reporter assay was conducted to confirm target associations.ResultsThe expression levels of miR-124 were frequently reduced in HCC cells and tissues, and low-level expression of miR-124 was significantly associated with a more aggressive and/or poor prognostic phenotype of patients with HCC (p<0.05). In HCC cell lines, stable overexpression of miR-124 was sufficient to inhibit cell motility and invasion in vitro, and suppress intrahepatic and pulmonary metastasis in vivo. In addition, ectopic overexpression of miR-124 in HCC cells inhibited epithelial–mesenchymal cell transition, formation of stress fibres, filopodia and lamellipodia. Further studies showed that miR-124 could directly target the 3′-untranslated region (3′-UTR) of both ROCK2 and EZH2 mRNAs, and suppress their mRNA and protein expressions. These findings suggest that miR-124 plays a critical role in regulating cytoskeletal events and epithelial–mesenchymal cell transition and, ultimately, inhibits the invasive and/or metastatic potential of HCC, probably by its direct target on ROCK2 and EZH2 genes. These results provide functional and mechanistic links between the tumour suppressor miRNA-124 and the two oncogenes ROCK2 and EZH2 on the aggressive nature of HCC.ConclusionThese data highlight an important role for miR-124 in the regulation of invasion and metastasis in the molecular aetiology of HCC, and suggest a potential application of miR-124 in prognosis prediction and cancer treatment.
Journal Article
Knockdown of lncRNA MALAT1 induces pyroptosis by regulating the miR‑124/SIRT1 axis in cervical cancer cells
2023
The aim of the present study was to elucidate the role and downstream mechanism of long non-coding RNA (lncRNA) metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) in the process of cervical cancer cell pyroptosis. The effect of inhibiting lncRNA MALAT1 on cervical cancer cells was determined using primary cells isolated from patients and U14 cervical tumor-bearing nude mice. The level of lncRNA MALAT1 expression and cell viability were determined for relationship analysis. Pyroptosis was then investigated in HeLa cells with lncRNA MALAT1 knockdown or overexpression with or without lipopolysaccharide (LPS) treatment. Bioinformatics tools were used to identify downstream factors of lncRNA MALAT1, which were subsequently verified by gain- or loss-of-function analyses in the process of cervical cancer cell pyroptosis. It was observed that the level of lncRNA MALAT1 was markedly higher in cervical carcinoma cells compared with expression in paracarcinoma cells, and knockdown of lncRNA MALAT1 induced cervical cancer cell death through pyroptosis. By contrast, overexpression of lncRNA MALAT1 blocked LPS-induced pyroptosis. These results, combined with bioinformatics statistical tools, demonstrated that the microRNA (miR)-124/sirtuin 1 (SIRT1) axis may affect the progression of cervical cancer at least partly by mediating the effect of lncRNA MALAT1 on the pyroptosis of cervical cancer cells. In conclusion, the lncRNA MALAT1/miR-124/SIRT1 regulatory axis in cervical cancer cells may mediate pyroptosis and may provide potential targets against the progression of cervical cancer.
Journal Article