Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Series TitleSeries Title
-
Reading LevelReading Level
-
YearFrom:-To:
-
More FiltersMore FiltersContent TypeItem TypeIs Full-Text AvailableSubjectPublisherSourceDonorLanguagePlace of PublicationContributorsLocation
Done
Filters
Reset
28,314
result(s) for
"microbial biodiversity"
Sort by:
Life in extreme environments : insights in biological capability
\"From deep ocean trenches and the geographical poles to outer space, organisms can be found living in remarkably extreme conditions. This book provides a captivating account of these systems and their extraordinary inhabitants, 'extremophiles'. A diverse, multidisciplinary group of experts discuss responses and adaptations to change; biodiversity, bioenergetic processes, and biotic and abiotic interactions; polar environments; and life and habitability, including searching for biosignatures in the extraterrestrial environment. The editors emphasize that understanding these systems is important for increasing our knowledge and utilizing their potential, but this remains an understudied area. Given the threat to these environments and their biota caused by climate change and human impact, this timely book also addresses the urgency to document these systems. It will help graduate students and researchers in conservation, marine biology, evolutionary biology, environmental change and astrobiology better understand how life exists in these environments and their susceptibility or resilience to change\"-- Provided by publisher.
Towards an assessment of multiple ecosystem processes and services via functional traits
by
Hering, Daniel
,
Lavorel, Sandra
,
Harrington, Richard
in
Analysis
,
Biodiversity
,
biogeochemical cycles
2010
Managing ecosystems to ensure the provision of multiple ecosystem services is a key challenge for applied ecology. Functional traits are receiving increasing attention as the main ecological attributes by which different organisms and biological communities influence ecosystem services through their effects on underlying ecosystem processes. Here we synthesize concepts and empirical evidence on linkages between functional traits and ecosystem services across different trophic levels. Most of the 247 studies reviewed considered plants and soil invertebrates, but quantitative trait–service associations have been documented for a range of organisms and ecosystems, illustrating the wide applicability of the trait approach. Within each trophic level, specific processes are affected by a combination of traits while particular key traits are simultaneously involved in the control of multiple processes. These multiple associations between traits and ecosystem processes can help to identify predictable trait–service clusters that depend on several trophic levels, such as clusters of traits of plants and soil organisms that underlie nutrient cycling, herbivory, and fodder and fibre production. We propose that the assessment of trait–service clusters will represent a crucial step in ecosystem service monitoring and in balancing the delivery of multiple, and sometimes conflicting, services in ecosystem management.
Journal Article
South African actinobacteria: A treasure trove of novel bioactive metabolites for drug discovery
by
Gammon, David W.
,
Beukes, Denzil R.
,
Acquah, Kojo S.
in
Actinomycetes
,
Biological activity
,
Filamentous bacteria
2024
Although South Africa is known as one of the most biodiverse countries in the world, based on its unique plants and animals, microorganisms have received much less attention. Microorganisms in general and actinobacteria in par ticular are an underexplored source of new medicines. Recent studies have demonstrated the presence of diverse cultivable actinobacteria from various biomes. However, investigations of the natural product diversity associated with these microorganisms are lacking. We hereby present a review of natural products isolated from South African actinobacteria together with their biological activities. Many of these natural products are structurally novel and include compounds belonging to the following classes: anthraquinones, isoflavonoids, ketolides, macrolides, macrolactams, tripeptides and depsipeptides. They show a wide range of biological activities including antibacterial, antifungal, cytotoxic and antitumour activities.Significance: • This review highlights the importance of actinobacteria in the discovery of new medicines and summarises the state-of-the-art on their research in South Africa. • We reveal a gap in the exploitation of this resource and emphasise the opportunities for multidisciplinary research.
Journal Article
Recurring patterns in bacterioplankton dynamics during coastal spring algae blooms
by
Reintjes, Greta
,
Teeling, Hanno
,
Bennke, Christin M
in
Algae
,
algal biomass
,
Annual variations
2016
A process of global importance in carbon cycling is the remineralization of algae biomass by heterotrophic bacteria, most notably during massive marine algae blooms. Such blooms can trigger secondary blooms of planktonic bacteria that consist of swift successions of distinct bacterial clades, most prominently members of the Flavobacteriia, Gammaproteobacteria and the alphaproteobacterial Roseobacter clade. We investigated such successions during spring phytoplankton blooms in the southern North Sea (German Bight) for four consecutive years. Dense sampling and high-resolution taxonomic analyses allowed the detection of recurring patterns down to the genus level. Metagenome analyses also revealed recurrent patterns at the functional level, in particular with respect to algal polysaccharide degradation genes. We, therefore, hypothesize that even though there is substantial inter-annual variation between spring phytoplankton blooms, the accompanying succession of bacterial clades is largely governed by deterministic principles such as substrate-induced forcing. Small algae in the world's oceans remove about as much carbon dioxide from the atmosphere as land plants. These algae do not grow continuously, but often surge in numbers during temporary blooms. Such blooms can be large enough to be seen from space by satellites. The lifespan of algae within such blooms is short, and when they die, marine bacteria feed on the remnants, which releases much of the stored carbon dioxide. Much of an algal cell consists of different types of polysaccharides. These large molecules are essentially made from sugars linked together. Polysaccharides are varied molecules and can contain many different sugars that can be linked in a number of different ways. During algae blooms bacteria proliferate that are specialized in the degradation of these polysaccharides. In 2012, researchers reported how over the progression of an algae bloom different groups of marine bacteria bloomed in rapid succession. However, it remained unknown whether the same or different groups of bacteria respond to algae blooms at the same place from year to year, and whether or not these bacteria use the same enzymes to degrade the polysaccharides. Teeling, Fuchs et al. – who include many of the researchers from the 2012 study – now report on the analysis of a series of algae blooms that occurred in the southern North Sea between 2009 and 2012. The analysis is based on samples collected every week during the spring seasons, and shows that certain groups of related bacteria, known as clades, became common during each bloom. Teeling, Fuchs et al. also found indications that the clades that repeatedly occurred had similar sets of genes for degrading algal polysaccharides, but that the sets were different between the clades. These data suggest that there is a specialized bacterial community that together can degrade the complex mixture of algal polysaccharides during blooms. This community reappears each year with an unexpectedly low level of variation. Since different species of algae made up the blooms in each year, this finding suggests that the major polysaccharides in these algae are similar or even identical. Future work will focus on the specific activities of bacterial enzymes that are needed to degrade polysaccharides during algae blooms. Study of these enzymes in the laboratory will help to resolve, which polysaccharides are attacked in which manner, and to ultimately help to identify the most abundant algal polysaccharides. This will improve our current understanding of the carbon cycle in the world’s oceans.
Journal Article
Headwaters are critical reservoirs of microbial diversity for fluvial networks
by
Quince, Christopher
,
Battin, Tom J.
,
Sloan, William
in
Alpha Diversity
,
Analysis of Variance
,
Austria
2013
Streams and rivers form conspicuous networks on the Earth and are among nature's most effective integrators. Their dendritic structure reaches into the terrestrial landscape and accumulates water and sediment en route from abundant headwater streams to a single river mouth. The prevailing view over the last decades has been that biological diversity also accumulates downstream. Here, we show that this pattern does not hold for fluvial biofilms, which are the dominant mode of microbial life in streams and rivers and which fulfil critical ecosystem functions therein. Using 454 pyrosequencing on benthic biofilms from 114 streams, we found that microbial diversity decreased from headwaters downstream and especially at confluences. We suggest that the local environment and biotic interactions may modify the influence of metacommunity connectivity on local biofilm biodiversity throughout the network. In addition, there was a high degree of variability in species composition among headwater streams that could not be explained by geographical distance between catchments. This suggests that the dendritic nature of fluvial networks constrains the distributional patterns of microbial diversity similar to that of animals. Our observations highlight the contributions that headwaters make in the maintenance of microbial biodiversity in fluvial networks.
Journal Article
Process Disturbances in Agricultural Biogas Production—Causes, Mechanisms and Effects on the Biogas Microbiome: A Review
2019
Disturbances of the anaerobic digestion process reduce the economic and environmental performance of biogas systems. A better understanding of the highly complex process is of crucial importance in order to avoid disturbances. This review defines process disturbances as significant changes in the functionality within the microbial community leading to unacceptable and severe decreases in biogas production and requiring an active counteraction to be overcome. The main types of process disturbances in agricultural biogas production are classified as unfavorable process temperatures, fluctuations in the availability of macro- and micronutrients (feedstock variability), overload of the microbial degradation potential, process-related accumulation of inhibiting metabolites such as hydrogen (H2), ammonium/ammonia (NH4+/NH3) or hydrogen sulphide (H2S) and inhibition by other organic and inorganic toxicants. Causes, mechanisms and effects on the biogas microbiome are discussed. The need for a knowledge-based microbiome management to ensure a stable and efficient production of biogas with low susceptibility to disturbances is derived and an outlook on potential future process monitoring and control by means of microbial indicators is provided.
Journal Article
Biogeographical survey of soil microbiomes across sub-Saharan Africa: structure, drivers, and predicted climate-driven changes
by
Kambura, AK
,
Seely, M
,
Boulangé, A
in
Biodiversity
,
Bioinformatics
,
Biomedical and Life Sciences
2022
Background
Top-soil microbiomes make a vital contribution to the Earth’s ecology and harbor an extraordinarily high biodiversity. They are also key players in many ecosystem services, particularly in arid regions of the globe such as the African continent. While several recent studies have documented patterns in global soil microbial ecology, these are largely biased towards widely studied regions and rely on models to interpolate the microbial diversity of other regions where there is low data coverage. This is the case for sub-Saharan Africa, where the number of regional microbial studies is very low in comparison to other continents.
Results
The aim of this study was to conduct an extensive biogeographical survey of sub-Saharan Africa’s top-soil microbiomes, with a specific focus on investigating the environmental drivers of microbial ecology across the region. In this study, we sampled 810 sample sites across 9 sub-Saharan African countries and used taxonomic barcoding to profile the microbial ecology of these regions. Our results showed that the sub-Saharan nations included in the study harbor qualitatively distinguishable soil microbiomes. In addition, using soil chemistry and climatic data extracted from the same sites, we demonstrated that the top-soil microbiome is shaped by a broad range of environmental factors, most notably pH, precipitation, and temperature. Through the use of structural equation modeling, we also developed a model to predict how soil microbial biodiversity in sub-Saharan Africa might be affected by future climate change scenarios. This model predicted that the soil microbial biodiversity of countries such as Kenya will be negatively affected by increased temperatures and decreased precipitation, while the fungal biodiversity of Benin will benefit from the increase in annual precipitation.
Conclusion
This study represents the most extensive biogeographical survey of sub-Saharan top-soil microbiomes to date. Importantly, this study has allowed us to identify countries in sub-Saharan Africa that might be particularly vulnerable to losses in soil microbial ecology and productivity due to climate change. Considering the reliance of many economies in the region on rain-fed agriculture, this study provides crucial information to support conservation efforts in the countries that will be most heavily impacted by climate change.
7-56gN9kgY7V6d-qS7zN26
Video Abstract
Journal Article
Climate warming enhances biodiversity and stability of grassland soil phosphorus-cycling microbial communities
by
Kao-Kniffin, Jenny
,
Zhou, Jizhong
,
Wang, Zijian
in
Bacteria - classification
,
Bacteria - genetics
,
Bacteria - metabolism
2025
Climate warming poses significant challenges to global phosphorus sustainability, an essential component of Earth biogeochemistry cycling and water-food-energy nexus. Despite the crucial role of polyphosphate-accumulating organism as key functional microbial agents in phosphorus cycling, the impacts of global climate warming on polyphosphate accumulating organism communities remain largely enigmatic. This study investigates the effects of climate warming on the taxonomic, network, and functional profiles of soil bacterial polyphosphate-accumulating organisms, leveraging fluorescence-activated cell sorting and single-cell Raman spectroscopy. Climate warming enhances both taxonomic and functional biodiversity of polyphosphate-accumulating organisms via biotic interactions and environmental filtering, with observed functionality-biodiversity relationships supporting the functional redundancy theory. Furthermore, polyphosphate-accumulating organism network complexity and stability rise under warming with strengthened positive relationships, supporting stress gradient hypothesis and the belief that complexity begets stability. Finally, polyphosphate-accumulating organisms are significantly correlated to key ecosystem functioning in carbon and phosphorus cycling under warming. Our study suggests that preserving polyphosphate-accumulating organism communities is crucial for maintaining soil ecosystem functioning and sustainable phosphorus management in a warming world and opens avenues for predicting the responses of other functional microbial groups to climate change, beneficially or maliciously.
Journal Article
Contrasting responses of plant herbivory and disease to local and landscape drivers
2024
Aim
Plant herbivory and disease, which are often associated with each other but subject to different processes, are pivotal in biodiversity maintenance and ecosystem function. Although drivers of plant herbivory and disease have been widely studied separately, their relationships, patterns and determinants remain unclear in fragmented landscapes.
Methods
We surveyed incidence and severity of foliar herbivory and disease of 2,027 adult trees within 30 sites in 17 tropical forest fragments in Xishuangbanna, southwestern China. We aim to explore the relationship of plant herbivory and disease, and effects of local environmental variables (forest type, plant richness, elevation, slope, soil properties) and landscape environmental variables (patch size, edge distance, isolation).
Results
We found that incidence, but not severity of disease was positively correlated with that of herbivory. Herbivory severity and incidence were more associated with local variables; both increased with plant richness but decreased with soil nutrients and pH. In contrast, the landscape variable isolation was the dominant driver of disease, with lower severity and incidence in contiguous forests than forest fragments.
Conclusion
In summary, we show that herbivory and disease are associated with drivers at different scales in fragmented landscapes. Herbivory is mainly driven by local-scale variables, while disease is mainly driven by landscape-scale variables. To control plant herbivory and disease in fragmented landscapes, increasing landscape connectivity and conserving different forest types are urgently required to maintain ecosystem functions under global land use change.
Journal Article
Linking soil bacterial and fungal communities to vegetation succession following agricultural abandonment
by
Zhang, Quanfa
,
Cheng, Xiaoli
,
Zhang, Kerong
in
abandoned land
,
Abandoned wells
,
Acidobacteria
2018
Background and aims Globally, the rate and extent of cropland abandonment increase greatly since 1950s. Knowledge of soil bacteria and fungi succession during long-term vegetation development is particularly limited for the abandoned croplands. In order to test the effects of agricultural abandonment on soil biota succession, we studied the soil bacterial and fungal composition and diversity in abandoned farmlands across a century of secondary vegetation successional gradient in China's Qinling Mountains. Methods Using high-throughput sequencing technologies, the soil fungal and bacterial communities were studied in 22 abandoned farmlands, as well as 7 adjacent arable fields representing non-abandoned references. Results The stand age, i.e., years since agricultural abandonment, affected the soil bacterial and fungal composition and explained 8.7 and 31.6% variations of bacterial and fungal communities (at order level), repectively. The Proteobacteria, dominated by chemoorganotrophic bacteria, kept its absolute dominance status (38.66% - 40.77%) constantly during succession even though the vegetation changed obviously from crop to grass, shrub, and forest. The relative abundances of Acidobacteria, Planctomycetes, Verrucomicrobia, Nitrospirae, and Spirochaetes increased significantly with stand age (i.e., years since abandonment), while the Firmicutes, Actinobacteria, Gemmatimonadetes, Cyanobacteria, and Armatimonadetes showed an opposite trend. A distinct shift in fungal communities from Ascomycota dominant in young stands to Basidiomycota -dominant in older stands was observed, which could be attributed to the increase of vegetation coverage and soil moisture during succession. The soil bacterial richness and diversity increased logarithmically with increasing stand age and gradually reached equilibrium in late-successional stage. Soil fungal diversity tended to increase in the early successional stages and then followed by a decreasing trend. The soil pH was the most important environmental factor predicating the soil fungal α-diversity measurements. Conclusions Both the soil bacterial and fungal communities displayed successional trends along with vegetation succession. The soil bacteria and fungi exhibited marked differences in successional pattern during secondary succession following agricultural abandonment.
Journal Article