Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
1,729 result(s) for "microbial pigments"
Sort by:
Pigment production by cold-adapted bacteria and fungi: colorful tale of cryosphere with wide range applications
Pigments are an essential part of everyday life on Earth with rapidly growing industrial and biomedical applications. Synthetic pigments account for a major portion of these pigments that in turn have deleterious effects on public health and environment. Such drawbacks of synthetic pigments have shifted the trend to use natural pigments that are considered as the best alternative to synthetic pigments due to their significant properties. Natural pigments from microorganisms are of great interest due to their broader applications in the pharmaceutical, food, and textile industry with increasing demand among the consumers opting for natural pigments. To fulfill the market demand of natural pigments new sources should be explored. Cold-adapted bacteria and fungi in the cryosphere produce a variety of pigments as a protective strategy against ecological stresses such as low temperature, oxidative stresses, and ultraviolet radiation making them a potential source for natural pigment production. This review highlights the protective strategies and pigment production by cold-adapted bacteria and fungi, their industrial and biomedical applications, condition optimization for maximum pigment extraction as well as the challenges facing in the exploitation of cryospheric microorganisms for pigment extraction that hopefully will provide valuable information, direction, and progress in forthcoming studies.
Multifaceted Applications of Microbial Pigments: Current Knowledge, Challenges and Future Directions for Public Health Implications
Microbial oddities such as versatile pigments are gaining more attention in current research due to their widely perceived applications as natural food colorants, textiles, antimicrobial activities, and cytotoxic activities. This indicates that the future generation will depend on microbial pigments over synthetic colorants for sustainable livelihood. Although several reviews have detailed the comprehensive applications of microbial pigments extensively, knowledge on several aspects of pigmented microbes is apparently missing and not properly reviewed anywhere. Thus, this review has been made to provide overall knowledge on biodiversity, distribution, pathogenicity, and ecological and industrial applications of microbial pigments as well as their challenges and future directions for food, industrial, and biomedical applications. Meticulously, this compendious review treatise on the pigments from bacteria, fungi, yeasts, and microalgae includes reports from the 1970s to 2018. A total of 261 pigment compounds produced by about 500 different microbial species are included, and their bioactive nature is described.
Beneficial Effects of Monascus sp. KCCM 10093 Pigments and Derivatives: A Mini Review
The production of Monascus pigments and related byproducts, via microbial fermentation, has been broadly utilized as coloring by traditional food industries and as a natural textile dye. In addition to these traditional purposes, Monascus pigments have been recently favored for a variety of commercial and academic purposes. Pigments and derivatives formed during Monascus fermentation have pharmaceutical and clinical properties that can counteract common diseases, including obesity, type-2 diabetes, and cancer. Various research attempts have investigated the optimum conditions for this derived compound synthesis, as well as the still-unknown bio-functional effects. Recently, several studies were conducted using Monascus sp. KCCM 10093 and its derivatives. These experimental outcomes potentially reflect the bio-functional features of Monascus sp. KCCM 10093. However, no publication to date provides an overview of Monascus sp. KCCM 10093’s unique metabolite products, functionalities, or biological pathways. In order to develop profitable commercial applications of Monascus sp. KCCM 10093, it is necessary not only to conduct continuous research, but also to systematically organize previous Monascus studies. The goals of this review are to investigate the current derivatives of Monascus sp. KCCM 10093 pigments—some of which have demonstrated newly-identified functionality—and the relevant uses of these molecules for pharmaceutical or nutraceutical purposes.
Microbial Pigments: Major Groups and Industrial Applications
Microbial pigments have many structures and functions with excellent characteristics, such as being biodegradable, non-toxic, and ecologically friendly, constituting an important source of pigments. Industrial production presents a bottleneck in production cost that restricts large-scale commercialization. However, microbial pigments are progressively gaining popularity because of their health advantages. The development of metabolic engineering and cost reduction of the bioprocess using industry by-products opened possibilities for cost and quality improvements in all production phases. We are thus addressing several points related to microbial pigments, including the major classes and structures found, the advantages of use, the biotechnological applications in different industrial sectors, their characteristics, and their impacts on the environment and society.
Microbial pigments as natural color sources: current trends and future perspectives
Synthetic colors have been widely used in various industries including food, textile, cosmetic and pharmaceuticals. However toxicity problems caused by synthetic pigments have triggered intense research in natural colors and dyes. Among the natural Sources, pigment producing microorganisms hold a promising potential to meet present day challenges. Furthermore natural colors not only improve the marketability of the product but also add extra features like anti oxidant, anti cancer properties etc. In this review, we present various sources of microbial pigments and to explore their biological and clinical properties like antimicrobial, antioxidant, anticancer and anti inflammatory. The study also emphasizes upon key parameters to improve the bioactivity and production of microbial pigments for their commercial use in pharmacological and medical fields.
Bacterial Secondary Metabolites as Biopigments for Textile Dyeing
In the past two decades, a growing body of research regarding the utilization of natural bacterial pigments or dyes for textile dyeing has emerged. Bacterial pigments are bacterial secondary metabolites that usually have bright colors and some special properties (e.g., antimicrobial, antioxidative, UV protective etc.). In addition to their high production yield, these special properties led scientists to research and develop methods for utilizing bacterial pigments in textile dyeing. This study presents the current state this field of research, with a focus on the dyeing potential of bacterial pigments for different types of textile material. The potential future directions of research in this area are also highlighted. In addition to the durable dyeing of textiles, bacterial pigments with special properties, such as antimicrobial activity, can add multifunctionality to dyed materials, thus increasing the value of the final product. This emerging field of research will also have a great impact on sustainability and the environment, contributing to the decreased usage of synthetic dyes in the textile industry.
Carotenoid pigments of Kocuria flava PUTS1_3 isolated from sediments of Puttalam lagoon mangrove ecosystem, Sri Lanka exhibit bioactive properties
Microorganisms, inhabiting various ecological niches, exhibit a capacity to produce a diverse array of pigments with different shades. These colorful microbial pigments may also potentially possess beneficial bioactivities. This dual functionality together with the ease of mass production and downstream processing has shifted the global attention towards the use of microbially-derived pigments as bioactive colorants in different industries. Therefore, the present study was conducted with the aim of characterizing the pigments from Kocuria flava and identifying their potential biotechnological applications. The bacterium, PUTS1_3, was isolated using the surface sediment samples from the Puttalam mangrove ecosystem, Sri Lanka and it was identified as Kocuria flava using 16S rRNA gene sequencing. The yellow, intracellular pigment of PUTS1_3 was obtained by treating the cell pellet with methanol. Characterization of the pigment extract using UV-visible spectroscopy, TLC, and HPLC confirmed the presence of three carotenoid compounds, including β-carotene. The pigment extract also demonstrated antibacterial activity, against Gram positive bacteria tested. Antioxidant properties were observed with an IC 50 value of 181.95 ± 4.57 µg/ml in the DPPH free radical scavenging assay. Although its sun protection factor was comparatively low (SPF 7.69 ± 0.01), the pigment showed promising results as a textile dye demonstrating good color performance and stability in washing and pH stability tests. Moreover, fabrics dyed with the pigment extract displayed antibacterial activity against Staphylococcus aureus (ATCC 25923). These findings suggest the potential use of the yellow pigments of K. flava PUTS1_3 for various biotechnological applications.
The hidden rainbow: the extensive biotechnological potential of Antarctic fungi pigments
The Antarctic continent is an extreme environment recognized mainly by its subzero temperatures. Fungi are ubiquitous microorganisms that stand out even among Antarctic organisms, primarily due to secondary metabolites production with several biological activities. Pigments are examples of such metabolites, which mainly occur in response to hostile conditions. Various pigmented fungi have been isolated from the Antarctic continent, living in the soil, sedimentary rocks, snow, water, associated with lichens, mosses, rhizospheres, and zooplankton. Physicochemical extreme environments provide a suitable setup for microbial pigment production with unique characteristics. The biotechnological potential of extremophiles, combined with concerns over synthetic pigments, has led to a great interest in natural pigment alternatives. Besides biological activities provided by fungal pigments for surviving in extreme environments (e.g., photoprotection, antioxidant activity, and stress resistance), it may present an opportunity for biotechnological industries. This paper reviews the biotechnological potential of Antarctic fungal pigments, with a detailed discussion over the biological role of fungal pigments, potential industrial production of pigments from extremophilic fungi, pigments toxicity, current market perspective and published intellectual properties related to pigmented Antarctic fungi.
Biopigments of Microbial Origin and Their Application in the Cosmetic Industry
Along with serving as a source of color, many microbial pigments have gained attention as interesting bioactive molecules with potential health advantages. These pigments have several applications in the food, agrochemical, medicine, and cosmetic industries. They have attracted the attention of these industries due to their high production value, low cost, stability, and biodegradability. Recently, many consumers worldwide have noted the impact of synthetic dyes; thus, natural pigments are more in demand than synthetic colors. On the other hand, the cosmetic industry has been moving toward greener manufacturing, from the formulation to the packaging material. Microbial pigments have several applications in the field of cosmetics due to their photoprotection, antioxidant, and antiaging properties, including inhibiting melanogenesis and acting as natural colorants for cosmetics, as some microorganisms are rich in pigments. More investigations are required to estimate the safety and efficacy of employing microbial pigments in cosmetic products. Furthermore, it is necessary to obtain information about DNA sequencing, metabolic pathways, and genetic engineering. In addition, unique habitats should be explored for novel pigments and new producing strains. Thus, new microbial pigments could be of consideration to the cosmetic industry, as they are ideal for future cosmetics with positive health effects.
Actinomycin X2, an Antimicrobial Depsipeptide from Marine-Derived Streptomyces cyaneofuscatus Applied as a Good Natural Dye for Silk Fabric
Actinomycins as clinical medicine have been extensively studied, while few investigations were conducted to discover the feasibility of actinomycins as antimicrobial natural dye contributing to the medical value of the functional fabrics. This study was focused on the application of actinomycin X2 (Ac.X2), a peptide pigment cultured from marine-derived Streptomyces cyaneofuscatus, in the dyeing and finishing of silk fabric. The dyeing potential of Ac.X2 with silk vs. cotton fabrics was assessed. As a result, the silk fabric exhibited greater uptake and color fastness with Ac.X2. Through Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), and X-ray diffraction (XRD) analyses, some changes of chemical property for the dyed fabric and Ac.X2 were studied. The silk fabric dyed with Ac.X2 exhibited good UV protection ability. The antibacterial properties of dyed and finished silk were also evaluated, which exhibited over 90% antibacterial activity even after 20 washing cycles. In addition, the brine shrimp assay was conducted to evaluate the general toxicity of the tested fabric, and the results indicated that the dyed silk fabrics had a good biological safety property.