Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
1
result(s) for
"microvisualization system"
Sort by:
Mechanistic Study of CO2-Based Oil Flooding in Microfluidics and Machine Learning Parametric Analysis
2025
CO2-enhanced oil recovery (CO2-EOR) has gained prominence as an effective oil displacement method with low carbon emissions, yet its microscopic mechanisms remain incompletely understood. This study introduces a novel high-pressure microfluidic visualization system capable of operating at 0.1–10 MPa without confining pressure and featuring stratified porous media with a 63 μm minimum throat size to provide unprecedented insights into CO2 and CO2-foam EOR processes at the microscale. Through quantitative image analysis and advanced machine learning modeling, we reveal that increasing the CO2 injection pressure nonlinearly reduces residual oil saturation, achieving near-complete miscibility at 6 MPa with only 2% residual oil—a finding that challenges conventional thresholds for miscibility in heterogeneous systems. Our work uniquely demonstrates that CO2-foam flooding not only mobilizes capillary-trapped oil films but also dynamically alters interfacial tension and the pore-scale fluid distribution, a phenomenon previously underexplored. Support Vector Regression (R2 = 0.71) further uncovers a nonlinear relationship between the surfactant concentration and residual oil saturation, offering a data-driven framework for parameter optimization. These results advance our fundamental understanding by bridging microscale dynamics with field-applicable insights, while the integration of machine learning with microfluidics represents a methodological leap for EOR research.
Journal Article