Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Series TitleSeries Title
-
Reading LevelReading Level
-
YearFrom:-To:
-
More FiltersMore FiltersContent TypeItem TypeIs Full-Text AvailableSubjectCountry Of PublicationPublisherSourceTarget AudienceDonorLanguagePlace of PublicationContributorsLocation
Done
Filters
Reset
111,674
result(s) for
"microwave"
Sort by:
Microwave Imaging Methods and Applications
The book provides practitioners and researchers with a complete overview of the latest and most important non-invasive and non-destructive techniques for inspecting structures and bodies by using microwaves.
A Review of Microwave Synthesis of Zinc Oxide Nanomaterials: Reactants, Process Parameters and Morphoslogies
2020
Zinc oxide (ZnO) is a multifunctional material due to its exceptional physicochemical properties and broad usefulness. The special properties resulting from the reduction of the material size from the macro scale to the nano scale has made the application of ZnO nanomaterials (ZnO NMs) more popular in numerous consumer products. In recent years, particular attention has been drawn to the development of various methods of ZnO NMs synthesis, which above all meet the requirements of the green chemistry approach. The application of the microwave heating technology when obtaining ZnO NMs enables the development of new methods of syntheses, which are characterised by, among others, the possibility to control the properties, repeatability, reproducibility, short synthesis duration, low price, purity, and fulfilment of the eco-friendly approach criterion. The dynamic development of materials engineering is the reason why it is necessary to obtain ZnO NMs with strictly defined properties. The present review aims to discuss the state of the art regarding the microwave synthesis of undoped and doped ZnO NMs. The first part of the review presents the properties of ZnO and new applications of ZnO NMs. Subsequently, the properties of microwave heating are discussed and compared with conventional heating and areas of application are presented. The final part of the paper presents reactants, parameters of processes, and the morphology of products, with a division of the microwave synthesis of ZnO NMs into three primary groups, namely hydrothermal, solvothermal, and hybrid methods.
Journal Article
Handbook of Microwave Component Measurements
2012
This book provides state-of-the-art coverage for making measurements on RF and Microwave Components, both active and passive. A perfect reference for R&D and Test Engineers, with topics ranging from the best practices for basic measurements, to an in-depth analysis of errors, correction methods, and uncertainty analysis, this book provides everything you need to understand microwave measurements. With primary focus on active and passive measurements using a Vector Network Analyzer, these techniques and analysis are equally applicable to measurements made with Spectrum Analyzers or Noise Figure Analyzers. The early chapters provide a theoretical basis for measurements complete with extensive definitions and descriptions of component characteristics and measurement parameters. The latter chapters give detailed examples for cases of cable, connector and filter measurements; low noise, high-gain and high power amplifier measurements, a wide range of mixer and frequency converter measurements, and a full examination of fixturing, de-embedding, balanced measurements and calibration techniques. The chapter on time-domain theory and measurements is the most complete treatment on the subject yet presented, with details of the underlying mathematics and new material on time domain gating. As the inventor of many of the methods presented, and with 30 years as a development engineer on the most modern measurement platforms, the author presents unique insights into the understanding of modern measurement theory. Key Features: Explains the interactions between the device-under-test (DUT) and the measuring equipment by demonstrating the best practices for ascertaining the true nature of the DUT, and optimizing the time to set up and measure Offers a detailed explanation of algorithms and mathematics behind measurements and error correction Provides numerous
illustrations (e.g. block-diagrams for circuit connections and measurement setups) and practical examples on real-world devices, which can provide immediate benefit to the reader Written by the principle developer and designer of many of the measurement methods described This book will be an invaluable guide for RF and microwave R&D and test engineers, satellite test engineers, radar engineers, power amplifier designers, LNA designers, and mixer designers. University researchers and graduate students in microwave design and test will also find this book of interest.
The Microwave-Induced Fracturing of Hard Rock
2019
A new, high-efficiency technology for fracturing and breaking rocks is required. Due to various advantages including high efficiency, energy-saving, and having no secondary pollution, the technology of microwave-induced fracturing of hard rock has been considered as a potential method for rock fracturing and breaking. Aiming at the realisation of two engineering applications: microwave-assisted mechanical rock breaking and stress release from rock masses in deep underground engineering works to prevent geological disasters caused by high-stress concentrations such as rockbursts, a novel (open-type) microwave-induced fracturing apparatus (OMWFA) for fracturing hard rocks was developed. On this basis, the two modes of microwave-induced subsurface fracturing and microwave-induced borehole fracturing of hard rocks were proposed. Due to removal of the restraint of the microwave cavity, OMWFA can be used to fracture large-size rock samples and engineering-scale rock masses. Using the apparatus, the fracturing effects of the two fracturing modes on different dimensions of cuboidal basalt samples were investigated. By combining the microwave-induced fracturing apparatus with a press machine to explore the influence of unidirectional stress on the fracturing effect of microwave treatment on basalt. Moreover, field tests were carried out on rock masses encountered in underground engineering works at Baihetan Hydropower Station in Sichuan Province, China, and the fracturing effects were evaluated by applying a digital borehole televiewer and conducting acoustic wave testing. The results show that the apparatus had favourable fracturing effects on the subsurface and borehole samples of basalt. When no stress was applied, the cracks radially expanded from the approximate centre of the radiant surface and unidirectional stress promoted fracturing. The number and depth of cracks increased with prolonged microwave exposure. After microwave treatment, the P-wave velocity of the samples declined, and the longer the microwave exposure, the more significant the reduction in P-wave velocity was. The results of field test reveal that borehole fracturing can exhibit a favourable effect around boreholes. The sound velocity around the borehole and between the boreholes both declined to some extent. Microwave-induced hard rock fracturing offers guiding significance to those exploring and developing new rock breaking and tunnelling methods, and generally enhances construction safety in deep underground engineering works.
Journal Article
Inkjet-printed antennas, sensors and circuits on paper substrate
2013
Inkjet-printing is a very promising technology for the development of microwave circuits and components. Inkjet-printing technology of conductive silver nanoparticles on an organic flexible paper substrate is introduced in this study. The paper substrate is characterised using the T-resonator method. A variety of microwave passive and active devices, as well as complete circuits inkjet-printed on paper substrates are introduced. This work includes inkjet-printed artificial magnetic conductor structures, a substrate integrated waveguide, solar-powered beacon oscillator for wireless power transfer and localisation, energy harvesting circuits and nanocarbon-based gas-sensing materials such as carbon nanotubes and graphene. This study presents an overview of recent advances of inkjet-printed electronics on paper substrate.
Journal Article