Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
25 result(s) for "mini-LED"
Sort by:
Mini-LED and Micro-LED: Promising Candidates for the Next Generation Display Technology
Displays based on inorganic light-emitting diodes (LED) are considered as the most promising one among the display technologies for the next-generation. The chip for LED display bears similar features to those currently in use for general lighting, but it size is shrunk to below 200 microns. Thus, the advantages of high efficiency and long life span of conventional LED chips are inherited by miniaturized ones. As the size gets smaller, the resolution enhances, but at the expense of elevating the complexity of fabrication. In this review, we introduce two sorts of inorganic LED displays, namely relatively large and small varieties. The mini-LEDs with chip sizes ranging from 100 to 200 μm have already been commercialized for backlight sources in consumer electronics applications. The realized local diming can greatly improve the contrast ratio at relatively low energy consumptions. The micro-LEDs with chip size less than 100 μm, still remain in the laboratory. The full-color solution, one of the key technologies along with its three main components, red, green, and blue chips, as well color conversion, and optical lens synthesis, are introduced in detail. Moreover, this review provides an account for contemporary technologies as well as a clear view of inorganic and miniaturized LED displays for the display community.
Mini-LED Backlight Technology Progress for Liquid Crystal Display
As consumers pursue higher display quality, Mini-LED backlight technology has become the focus of research in the current display field. With its size advantage (100–200 μm), it can achieve one-thousand-level divisional dimming, and it can also be combined with quantum dot technology to greatly improve the contrast, color gamut, dark state and other element of the display performance of LCD displays. Mini-LED backlight technology is undoubtedly the most ideal solution to realize a highly dynamic range display of LCD displays, and has been widely commercialized in many fields such as TVs, tablet computers, notebook computers, and car monitors. This review mainly introduces the efforts made by researchers to eliminate the halo effect, thinning of the backlight module and reducing the backlight power consumption. The application of quantum dot technology in backlight is also presented. We predict that the number of Mini-LED backlight partitions is expected to reach a level of more than 3000 in the future, further utilizing the advantages of the small size in local dimming, but it will also inevitably be challenged by some issues such as power consumption and heat dissipation.
A Review of Light-Emitting Diodes and Ultraviolet Light-Emitting Diodes and Their Applications
This paper presents an extensive literature review on Light-Emitting Diode (LED) fundamentals and discusses the historical development of LEDs, focusing on the material selection, design employed, and modifications used in increasing the light output. It traces the evolutionary trajectory of the efficiency enhancement of ultraviolet (UV), blue, green, and red LEDs. It rigorously examines the diverse applications of LEDs, spanning from solid-state lighting to cutting-edge display technology, and their emerging role in microbial deactivation. A detailed overview of current trends and prospects in lighting and display technology is presented. Using the literature, this review offers valuable insights into the application of UV LEDs for microbial and potential viral disinfection. It conducts an in-depth exploration of the various microorganism responses to UV radiation based on the existing literature. Furthermore, the review investigates UV LED-based systems for water purification and surface disinfection. A prospective design for a solar-powered UV LED disinfection system is also delineated. The primary objective of this review article is to organize and synthesize pivotal information from the literature, offering a concise and focused overview of LED applications. From our review, we can conclude that the efficiency of LEDs has continuously increased since its invention and researchers are searching for methods to increase efficiency further. The demand for LED lighting and display applications is continuously increasing. Our analysis reveals an exciting horizon in microbial disinfection, where the integration of UV LED systems with cutting-edge technologies such as sensors, solar power, Internet-of-Things (IoT) devices, and artificial intelligence algorithms promises high levels of precision and efficacy in disinfection practices. This contribution sets the stage for future research endeavors in the domain of viral disinfection using solar-powered UV LED modules for universal applications.
Advancing LED technology: the FDCSP element’s breakthrough in mini and micro-LED packaging and backlight module enhancement
In this research, we introduce an advanced methodology for the calculation of bulk light sources tailored for free-form surface design, focusing on the principle of energy conservation. This method is especially relevant for the evolving needs of micro-LED packaging, highlighting its potential in this burgeoning field. Our work includes the development of an algorithm for creating freeform-designed chip-scale package (FDCSP) components. These components seamlessly integrate LEDs and lenses, underscoring our commitment to advancing free-form surface design in chip-level packaging. By adhering to the principle of energy conservation, our approach facilitates a meticulous comparison of simulation outcomes with predefined target functions. This enables the iterative correction of discrepancies, employing layering techniques to refine the design until the simulated results closely align with our goals, as demonstrated by an appropriate difference curve. The practical application of these simulations leads to the innovative design of FDCSP devices. Notably, these devices are not just suitable for traditional applications in backlight modules but are explicitly optimized for the emerging sector of micro-LED packaging. Our successful demonstration of these FDCSP devices within backlight modules represents a significant achievement. It underscores the effectiveness of our design strategy and its expansive potential to transform micro-LED packaging solutions. This research not only contributes to the theoretical understanding of energy conservation in lighting design but also paves the way for groundbreaking applications in micro-LED and backlight module technologies.
Fine-grained phosphors for red-emitting mini-LEDs with high efficiency and super-luminance
Mini-LED backlights, combining color conversion materials with blue mini-LED chips, promise traditional liquid crystal displays (LCDs) with higher luminance, better contrast, and a wider color gamut. However, as color conversion materials, quantum dots (QDs) are toxic and unstable, whereas commercially available inorganic phosphors are too big in size to combine with small mini-LED chips and also have strong size-dependence of quantum efficiency (QE) and reliability. In this work, we prepare fine-grained Sr 2 Si 5 N 8 :Eu 2+ -based red phosphors with high efficiency and stability by treating commercially available phosphors with ball milling, centrifuging, and acid washing. The particle size of phosphors can be easily controlled by milling speed, and the phosphors with a size varying from 3.5 to 0.7 μm are thus obtained. The samples remain the same QE as the original ones (∼80%) even when their particle size is reduced to 3.2–3.5 μm, because they contain fewer surface suspension bond defects. More importantly, SrBaSi 5 N 8 :Eu 2+ phosphors show a size-independent thermal quenching behavior and a zero thermal degradation. We demonstrate that red-emitting mini-LEDs can be fabricated by combining the SrBaSi 5 N 8 :Eu 2+ red phosphor (3.5 μm in size) with blue mini-LED chips, which show a high external quantum efficiency (EQE) of above 31% and a super-high luminance of 34.3 Mnits. It indicates that fine and high efficiency phosphors can be obtained by the proposed method in this work, and they have great potentials for use in mini-LED displays.
Mini-LED Backlight: Advances and Future Perspectives
Miniaturized-light-emitting diode (mini-LED) backlights have emerged as the state-of-the-art technology for liquid crystal display (LCD), facilitating the improvement in a high dynamic range (HDR) and power saving. The local dimming technology divides the backlight into several dimming zones. Employing mini-LEDs, whose size ranges from 100 to 200 μm, as the light sources can enlarge the number of zones in the local dimming backlight, fulfilling the requirement for HDR. However, the halo effect still acts as one of the primary technological bottlenecks for mini-LED backlights. In this review, packaging technology of LEDs, color conversion, and the driving scheme of mini-LED backlights have been discussed. The strategies to reduce optical crosstalk in adjacent areas by various improved optical structures or to suppress the halo effect of LCDs by mini-LED backlights are summarized. The development trends of mini-LED backlights are also discussed.
Enhanced Light Extraction of Flip-Chip Mini-LEDs with Prism-Structured Sidewall
Current solutions for improving the light extraction efficiency of flip-chip light-emitting diodes (LEDs) mainly focus on relieving the total internal reflection at sapphire/air interface, but such methods hardly affect the epilayer mode photons. We demonstrated that the prism-structured sidewall based on tetramethylammonium hydroxide (TMAH) etching is a cost-effective solution for promoting light extraction efficiency of flip-chip mini-LEDs. The anisotropic TMAH etching created hierarchical prism structure on sidewall of mini-LEDs for coupling out photons into air without deteriorating the electrical property. Prism-structured sidewall effectively improved light output power of mini-LEDs by 10.3%, owing to the scattering out of waveguided light trapped in the gallium nitride (GaN) epilayer.
Beyond 100 m Range Mini-LED-Based Visible Light Communication System
In visible light communication (VLC) systems, lenses are typically used to collimate light at the transmitter. However, due to the wide light emission angle of mini-LEDs, capturing light at large angles using a lens at the transmitter can be challenging. This paper presents a design of a reflective cup at the mini-LED-based VLC transmitter. The redesigned reflective cup can collect most of the light and collimate it, achieving an efficiency of approximately 86% at a distance of 10 m in the simulation. In the experiment, error-free communication was achieved at a distance of 100 m with a data rate of 190 Mbps. To the best of our knowledge, a long-distance VLC system based on mini-LEDs is investigated for the first time. The reflective cup offers advantages, including high efficiency, low cost, and a simple structure. It holds reference value for addressing the issue of limited communication distance in underwater wireless optical communication (UWOC).
Zero-Optical-Distance Mini-LED Backlight with Cone-Shaped Light Coupling Microstructures
This paper presents a zero-optical-distance mini-LED backlight with cone-shaped light coupling microstructures to achieve an ultra-thin backlight architecture (~0.1 mm thickness) by combining the characteristics of direct-lit and edge-lit backlights. There is no gap between the light guide plate (LGP) and the reflector, as well as between the LGP and the mini-LED embedded in the reflector. The illuminance uniformity and light extraction efficiency (LEE) of the whole structure reach 91.47% and 77.09%, respectively. Nine sub-modules are spliced together to realize 2D local dimming with 0.29% crosstalk. The structure shows high optical performance while reducing the thickness of the backlight module, which is of great significance for the development of mini-LED backlights.
Innovative Stacked Yellow and Blue Mini-LED Chip for White Lamp Applications
This study introduces a novel approach for fabricating vertically stacked mini-LED arrays, integrating InGaN yellow and blue epitaxial layers with a stress buffer layer to enhance optoelectronic characteristics and structural stability. This method significantly simplifies the LED design by reducing the need for RGB configurations, thus lowering costs and system complexity. Employing vertical stacking integration technology, the design achieves high-density, efficient white light production suitable for multifunctional applications, including automotive lighting and outdoor signage. Experimental results demonstrate the exceptional performance of the stacked yellow and blue mini-LEDs in terms of luminous efficiency, wavelength precision, and thermal stability. The study also explores the performance of these LEDs under varying temperature conditions and their long-term reliability, indicating that InGaN-based yellow LEDs offer superior performance over traditional AlGaInP yellow LEDs, particularly in high-temperature environments. This technology promises significant advancements in the design and application of lighting systems, with potential implications for both automotive and general illumination markets.