Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
4
result(s) for
"mixed-micellar liquid chromatography"
Sort by:
Determination of six drugs used for treatment of common cold by micellar liquid chromatography
by
Ibrahim, Adel Ehab
,
Elmaaty, Ayman Abo
,
El-Sayed, Heba Mohamed
in
Biohazards
,
Colds
,
Common cold
2021
The use of organic solvents as eluants in RP-HPLC has an important role to decrease retention time and improve peak shape; however, it has high environmental impacts. Their production and disposal represent economic and biohazard problems. So, alternatives had to be introduced and studied to minimize such pollution. Combination of sodium dodecyl sulfate (SDS) together with polyoxyethylene-23-lauryl ether (Brij-35) was studied as an alternative to the presence of organic solvents on the separation performance of six active pharmaceutical ingredients. Response surface methodology was applied to test the impact of three independent variables; concentrations of SDS and Brij-35, as well as, pH of the mobile phase; on retention, peak symmetry, and resolution of the analytes using a rotatable central composite design. Significant variables were determined and the suggested models for predicting retention and resolution parameters were significant. Meanwhile, the common cold is the most abundant disease treated with over-the-counter (OTC) medications worldwide. In 2015, the USA recorded $9.56 billion total sales of OTC cold and cough medicaments alone, with average individual patient expenditure of $338. The worldwide sales and generics of common cold and cough products keep growing annually. The six active pharmaceutical molecules under study, namely, paracetamol, guaifenesin, pseudoephedrine, ibuprofen, chlorpheniramine, and dextromethorphan, are widely used in common cold products. The predicted optimum conditions were validated using mobile phase consisting of 93.6 mM SDS, 32.0 mM Brij-35, and 10.0 mM sodium dihydrogen phosphate, adjusted at pH 5.2, column temperature 35° C, and detection at 215-nm wavelength. The method was successfully applied to determine 12 different combination formulae of the analytes in their pharmaceutical products and was assessed for greenness on two novel metrics. A thorough comparison to previously reported methods was included and methods were assessed against greenness metrics Green Analytical Procedure Index and Analytical Greenness Metric to demonstrate superiority.
Journal Article
Green Stability Indicating Organic Solvent-Free HPLC Determination of Remdesivir in Substances and Pharmaceutical Dosage Forms
2021
A green liquid chromatographic method is considered in this work to minimize the environmental impact of waste solvents. One important principle is to replace or eliminate the use of hazardous organic solvents. Organic impurities in any active pharmaceutical ingredient could arise either during the process of its synthesis, or as degradation products developed throughout the shelf-life. Remdesivir (RDS) is an antiviral drug, approved by the US Food and Drug Adminstration (-FDA), to treat SARS-Cov-2 virus during its pandemic crisis. We studied the stability of remdesivir against several degradation pathways using the organic solvent-free liquid chromatographic technique. Separation was performed on RP-C18 stationary phase using mixed-micellar mobile phase composed of a mixture of 0.025 M Brij-35, 0.1 M sodium lauryl sulfate (SLS), and 0.02 M disodium hydrogen phosphate, adjusted to pH 6.0. The mobile phase flow rate was 1 mL min−1, and detection was carried out at a wavelength of 244 nm. We profiled the impurities that originated in mild to drastic degradation conditions. The method was then validated according to International Conference of Harmonization (ICH) guidelines within a linearity range of 5–100 μg mL−1 and applied successfully for the determination of the drug in its marketed dosage form. A brief comparison was established with reported chromatographic methods, including a greenness assessment on two new metrics (GAPI and AGREE). This study is the first to be reported as eco-friendly, solvent-free, and stability indicating LC methodology for RDS determination and impurity profiling.
Journal Article
Simultaneous optimization of resolution and analysis time in mixed micellar liquid chromatography of coumarins by use of a utility function
2006
A chemometrics approach has been used to optimize the separation of eight coumarin compounds by mixed micellar liquid chromatography. A utility function, a multi-criterion decision-making (MCDM) method, was tested for evaluation of two different measures of chromatographic performance (resolution and analysis time). The effect of six experimental parameters on a chromatographic response function (CRF) was investigated. The factors studied were the concentrations of SDS and Brij-35, alkyl-chain length of the alcohol used as organic modifier, organic modifier concentration, mobile phase pH, and temperature. The experiments were performed according to a face-centered cube response-surface experimental design. For evaluation of the chromatograms a simple linear response function was used which expressed as a summation of two optimization criteria, resolution and analysis time. Then calculated CRF values were fitted to a polynomial model to correlate the CRF values with the variables and their interactions. The regression model obtained was characterized by both its descriptive and predictive ability (R=0.963 and [graphic removed] ) and used, by means of a grid-search algorithm, to optimize the chromatographic conditions. Experiments performed under the optimum conditions predicted by the model produced a chromatogram of high quality. The model was also verified by the good agreement observed between predicted and experimental values of the chromatographic response function under the optimum conditions.
Journal Article
Eco-Friendly and Sensitive HPLC and TLC Methods Validated for the Determination of Betahistine in the Presence of Its Process-Related Impurity
by
Hendawy, Hassan A. M.
,
Ibrahim, Adel Ehab
,
Abdellatef, Hisham Ezzat
in
Accuracy
,
Aluminum
,
Ammonia
2022
Reducing the amounts consumed of organic solvents while keeping good chromatographic performance has been a significant step towards the greening of analytical methodologies. When sodium dodecyl sulfate (SDS) and Brij-35 surfactants are combined in a mobile phase, they can be used as a green alternative to organic modifiers. Surfactants have numerous advantages, including low cost and toxicity, safe environmental disposal, and unique selectivity, in addition to high solubilization capabilities. In this research, two highly selective chromatographic methods were adopted for the determination of betahistine (BHS) in the presence of its pharmacopeial impurity 2-(2-hydroxyethyl)pyridine (HEP). A solvent-free HPLC method was validated, in which the mixture was separated using a C18 column (3.5 µm, 75.0 × 4.6 mm) and a mobile phase composed of 0.01 M Brij-35, 0.12 M SDS, and 0.02 M disodium hydrogen phosphate adjusted to a pH of 5.5 using phosphoric acid. The flow rate was 1.5 mL min−1 and the resolved peaks were detected at 260 nm. Another HPTLC-densitometric method was validated using HPTLC aluminum plates coated with silica gel 60 F254 as the stationary phase and a developing system consisting of methylene chloride/methanol/ethyl acetate/ammonia (at a ratio of 5:2:2:0.2 by volume); the separated bands were scanned at 260 nm.
Journal Article