Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
33,476 result(s) for "model compounds"
Sort by:
Oil-Soluble Exogenous Catalysts and Reservoir Minerals Synergistically Catalyze the Aquathermolysis of Heavy Oil
Oil is the “blood” and economic lifeblood of modern industry, but traditional light crude oil has been over-consumed, and it has been difficult to meet human demand for energy, so the exploitation of heavy oil is particularly important. In this paper, an oil-soluble catalyst was synthesized to catalyze the pyrolysis reaction of heavy oil in collaboration with reservoir minerals, so as to achieve efficient viscosity reduction of heavy oil and reduce production costs. The experimental results showed that Zn(II)O + K had the best synergistic viscosity reduction effect after the aquathermolysis of No. 1 oil sample under the reaction conditions of 180 °C, 4 h, 30% of water, and 0.2% of catalyst, respectively, and the viscosity reduction rate was 61.74%. Under the catalysis of the isopropanol system, the viscosity reduction rate was increased to 91.22%. A series of characterizations such as freezing point, thermogravimetric analysis, DSC analysis, component analysis, gas chromatography, wax crystal morphology analysis, and GC-MS analysis of aqueous organic matter were carried out on heavy oil after reaction by different reaction systems, and it could be verified that the viscosity of heavy oil was reduced. Finally, through the study of the reaction mechanism of the model compound, combined with the aqueous phase analysis, it can be clearly found that the depolymerization between macromolecules, the breaking of heteroatom chains, hydrogenation, ring opening, and other effects mainly occur during the reaction, thereby weakening the van der Waals force and hydrogen bond of the recombinant interval, inhibiting the formation of grid structure in heavy oil and effectively reducing the viscosity of heavy oil.
New Insights into Green Protocols for Oxidative Depolymerization of Lignin and Lignin Model Compounds
Oxidative depolymerization of lignin is a hot topic in the field of biomass valorization. The most recent and green procedures have been herein detailed. Photochemical and electrochemical approaches are reviewed highlighting the pros and cons of each method. Mechanochemistry activated strategies are able to combine oxidation and depolymerization in the deconstruction of lignin. Homogenous and heterogeneous catalytic systems are exemplified stressing the green aspects associated with both the procedures. Solvent-free approaches as well as those carried out in alternative media are listed. Finally, the few examples of selenium catalyzed lignin valorization reported so far are cited.
Enhancing the Silanization Reaction of the Silica-Silane System by Different Amines in Model and Practical Silica-Filled Natural Rubber Compounds
Diphenyl guanidine (DPG) is an essential ingredient in silica-reinforced rubber compounds for low rolling resistance tires, as it not only acts as a secondary accelerator, but also as a catalyst for the silanization reaction. However, because of concern over the toxicity of DPG that liberates aniline during high-temperature processing, safe alternatives are required. The present work studies several amines as potential alternatives for DPG. Different amines (i.e., hexylamine, decylamine, octadecylamine, cyclohexylamine, dicyclohexylamine, and quinuclidine) are investigated in a model system, as well as in a practical rubber compound by taking the ones with DPG and without amine as references. The kinetics of the silanization reaction of the silica/silane mixtures are evaluated using model compounds. The mixtures with amines show up to 3.7 times higher rate constants of the primary silanization reaction compared to the compound without amine. Linear aliphatic amines promote the rate constant of the primary silanization reaction to a greater extent compared to amines with a cyclic structure. The amines with short-alkyl chains that provide better accessibility towards the silica surface, enhance the primary silanization reaction more than the ones with long-alkyl chains. The different amines have no significant influence on the rate constant of the secondary silanization reaction. The amine types that give a higher primary silanization reaction rate constant show a lower flocculation rate in the practical compounds. For the systems with a bit lower primary silanization reaction rate, but higher extent of shielding or physical adsorption that still promotes higher interfacial compatibility between the elastomer and the filler surface, the rubber compounds show a lower Payne effect which would indicate lower filler-filler interaction. However, the flocculation rate constant remained high.
Catalytic Hydrogenolysis Lignin to Obtain Phenols: A Review of Selective Cleavage of Ether Bonds
Lignin depolymerized phenolic compounds and biofuel precursors are ideal value-added products for lignin residues generated in biorefineries and modern paper pulp facilities. Hydrogenolysis of lignin is an efficient depolymerization method for the production of carbon-neutral sustainable fuels and platform chemicals. Lignin is underutilized due to its complex structure, mainly because of its complex interunit linkage crosslinks such as α-O-4, β-O-4, 4-O-5, and β-5. This paper centers on the hydrolysis reaction of three major ether bonds (α-O-4, β-O-4, 4-O-5) in lignin and lignin model compounds based on different catalysts for hydrogenative degradation and catalytic systems. The methods and strategies to inhibit the condensation reactions are summarized. In particular, density functional theory calculation of the reaction pathways are combined with isotopically labeled reaction pathways to deeply analyze the hydrogenation degradation mechanism of biomass and further improve the yield of monophenols during the hydrogenation degradation of lignin. Finally, a brief summary of the challenges and prospects of lignin hydrogenation degradation is proposed.
A Comprehensive Study on Pyrolysis Mechanism of Substituted β-O-4 Type Lignin Dimers
In order to understand the pyrolysis mechanism of β-O-4 type lignin dimers, a pyrolysis model is proposed which considers the effects of functional groups (hydroxyl, hydroxymethyl and methoxyl) on the alkyl side chain and aromatic ring. Furthermore, five specific β-O-4 type lignin dimer model compounds are selected to investigate their integrated pyrolysis mechanism by density functional theory (DFT) methods, to further understand and verify the proposed pyrolysis model. The results indicate that a total of 11 pyrolysis mechanisms, including both concerted mechanisms and homolytic mechanisms, might occur for the initial pyrolysis of the β-O-4 type lignin dimers. Concerted mechanisms are predominant as compared with homolytic mechanisms throughout unimolecular decomposition pathways. The competitiveness of the eleven pyrolysis mechanisms are revealed via different model compounds, and the proposed pyrolysis model is ranked in full consideration of functional groups effects. The proposed pyrolysis model can provide a theoretical basis to predict the reaction pathways and products during the pyrolysis process of β-O-4 type lignin dimers.
Model compounds for evaluating the reactivity of amphetamine-type stimulants
The use of controlled precursors for reaction optimisation is not always practical. One approach to limiting the use of controlled substances is to instead use ‘model compounds’. Herein, two model compounds resembling norephedrine and ephedrine were selected based on their (i) structural similarity (i.e., presence of key functional groups) and (ii) availability from multiple suppliers without restriction. Model compounds 2-amino-1-phenylethanol and 2-(methylamino)-1-phenylethanol (halostachine), were compared to norephedrine and pseudoephedrine by firstly subjecting them to transformations known in the synthesis of amphetamines, and secondly, comparing the compounds using colourimetric spot tests, FTIR and NMR. [Display omitted] •The use of 2-amino-1-phenylethanol as a model compound for norephedrine.•The use of 2-(methylamino)-1-phenylethanol (halostachine) as a model compound for pseudoephedrine.•Advantages regarding the use of models compounds in place of controlled substances.•The synthesis of β-chloro amines and aziridines from model compounds.
Hydrosilylation vs. Piers–Rubinsztajn: Synthetic Routes to Chemically Cross-Linked Hybrid Phosphazene-Siloxane 3D-Structures
Exploration of new ways for the direct preparation of cross-linked structures is a significant problem in terms of materials for biomedical applications, lithium batteries electrolytes, toughening of thermosets (epoxy, benzoxazine, etc.) with interpenetrating polymer network, etc. The possibility to utilize hydrosilylation and Piers–Rubinsztajn reactions to obtain cross-linked model phosphazene compounds containing eugenoxy and guaiacoxy groups has been studied. It was shown that Piers–Rubinsztajn reaction cannot be used to prepare phosphazene-based tailored polymer matrix due to the catalyst deactivation by nitrogen atoms of main chain units. Utilizing the hydrosilylation reaction, a series of cross-linked materials were obtained, and their properties were studied by NMR spectroscopy, FTIR, DSC, and TGA. Rheological characterizations of the prepared tailored matrices were conducted. This work showed a perspective of using eugenoxy functional groups for the preparation of three-dimensional hybrid phosphazene/siloxane-based materials for various applications.
Sonocatalytic Activity of Porous Carbonaceous Materials for the Selective Oxidation of 4-Hydroxy-3,5-dimethoxybenzyl Alcohol
Selective oxidation, which is crucial in diverse chemical industries, transforms harmful chemicals into valuable compounds. Heterogeneous sonocatalysis, an emerging sustainable approach, urges in-depth exploration. In this work, we investigated N-doped or non-doped carbonaceous materials as alternatives to scarce, economically sensitive metal-based catalysts. Having synthesized diverse carbons using a hard-template technique, we subjected them to sonication at frequencies of 22, 100, 500, and 800 kHz with a 50% amplitude. Sonochemical reaction catalytic tests considerably increased the catalytic activity of C-meso (non-doped mesoporous carbon material). The scavenger test showed a radical formation when this catalyst was used. N-doped carbons did not show adequate and consistent sonoactivity for the selective oxidation of 4-Hydroxy-3,5 dimethoxybenzyl alcohol in comparison with control conditions without sonication, which might be associated with an acid–base interaction between the catalysts and the substrate and sonoactivity prohibition by piridinic nitrogen in N-doped catalysts.
Catalytic hydrogenolysis lignin to obtain phenols: A review of selective cleavage of ether bonds
Lignin depolymerized phenolic compounds and biofuel precursors are ideal value-added products for lignin residues generated in biorefineries and modern paper pulp facilities. Hydrogenolysis of lignin is an efficient depolymerization method for the production of carbon-neutral sustainable fuels and platform chemicals. Lignin is underutilized due to its complex structure, mainly because of its complex interunit linkage crosslinks such as α-O-4, β-O-4, 4-O-5, and β-5. This paper centers on the hydrolysis reaction of three major ether bonds (α-O-4, β-O-4, 4-O-5) in lignin and lignin model compounds based on different catalysts for hydrogenative degradation and catalytic systems. The methods and strategies to inhibit the condensation reactions are summarized. In particular, density functional theory calculation of the reaction pathways are combined with isotopically labeled reaction pathways to deeply analyze the hydrogenation degradation mechanism of biomass and further improve the yield of monophenols during the hydrogenation degradation of lignin. Finally, a brief summary of the challenges and prospects of lignin hydrogenation degradation is proposed.
Catalytic Hydroconversion of Model Compounds over Ni/NiO@NC Nanoparticles
The conversion of lignite into aromatic compounds by highly active catalysts is a key strategy for lignite valorization. In this study, Ni/NiO@NC nanocomposites with a high specific surface area and a vesicular structure were successfully prepared via a facile sol–gel method. The Ni/NiO@NC catalysts exhibited excellent catalytic activity for the catalytic hydroconversion (CHC) of benzyloxybenzene (as lignite-related modeling compounds) under mild conditions (120 °C, 1.5 MPa H2, 60 min). The possible mechanism of the catalytic reaction was investigated by analyzing the type and content of CHC reaction products at different temperatures, pressures, and times. More importantly, the magnetic catalyst could be conveniently separated by a magnet after the reaction, and it maintained high catalytic efficiency after six reuses. This study provides an efficient and recyclable catalyst for the cleavage of >CH–O bonds in lignite, thereby offering another way for improved utilization of lignite.