Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
223 result(s) for "model of character evolution"
Sort by:
Evolution on the backbone
Premise of the Study We provide the largest phylogenetic analyses to date of Apocynaceae in terms of taxa and molecular data as a framework for analyzing the evolution of vegetative and reproductive traits. Methods We produced maximum‐likelihood phylogenies of Apocynaceae using 21 plastid loci sampled from 1045 species (nearly 25% of the family) and complete plastomes from 73 species. We reconstructed ancestral states and used model comparisons in a likelihood framework to analyze character evolution across Apocynaceae. Key Results We obtained a well‐supported phylogeny of Apocynaceae, resolving poorly understood tribal and subtribal relationships (e.g., among Amsonieae and Hunterieae, within Asclepiadeae), rejecting monophyly of Melodineae and Odontadenieae, and placing previously unsampled and enigmatic taxa (e.g., Pycnobotrya). We provide new insights into the evolution of Apocynaceae, including frequent shifts between herbaceousness and woodiness, reversibility of twining, integrated evolution of the corolla and gynostegium, and ancestral baccate fruits. Conclusions Increased sampling and selection of best‐fitting models of evolution provide more resolved and robust estimates of phylogeny and character evolution than obtained in previous studies. Evolutionary inferences are sensitive to choice of phylogenetic frameworks and models.
Evolution at the tips
Premise of the Study Leaf surface traits, such as trichome density and wax production, mediate important ecological processes such as anti‐herbivory defense and water‐use efficiency. We present a phylogenetic analysis of Asclepias plastomes as a framework for analyzing the evolution of trichome density and presence of epicuticular waxes. Methods We produced a maximum‐likelihood phylogeny using plastomes of 103 species of Asclepias. We reconstructed ancestral states and used model comparisons in a likelihood framework to analyze character evolution across Asclepias. Key Results We resolved the backbone of Asclepias, placing the Sonoran Desert clade and Incarnatae clade as successive sisters to the remaining species. We present novel findings about leaf surface evolution of Asclepias—the ancestor is reconstructed as waxless and sparsely hairy, a macroevolutionary optimal trichome density is supported, and the rate of evolution of trichome density has accelerated. Conclusions Increased sampling and selection of best‐fitting models of evolution provide more resolved and robust estimates of phylogeny and character evolution than obtained in previous studies. Evolutionary inferences are more sensitive to character coding than model selection.
UNCOUPLED EVOLUTION OF MALE AND FEMALE CONE SIZES IN AN ANCIENT CONIFER LINEAGE
Premise of research. Sexual functions in gymnosperms are mostly performed by separate reproductive structures, which largely reduces sexual interference and sets the scene for morphological and functional sexual specialization. The evolutionary trajectories followed by traits related to the male and female functions are therefore expected to be uncoupled. Studies on the fossil record of the conifer family Araucariaceae revealed important morphological changes occurring in reproductive cones. Here, we explored the pattern of evolution of male and female cone sizes in Araucariaceae, with a special focus on Araucaria—the most variable and widespread genus in the family. Methodology. We gathered data on male and female cone sizes from fossils and extant Araucariaceae species. Focusing on Araucaria, we analyzed whether cone sizes are phylogenetically structured. Furthermore, we compared the evolutionary trajectories of male and female cone sizes by evaluating the goodness of fit of different evolutionary models. Finally, we evaluated whether different selective regimes across the phylogeny could have shaped cone morphology. Pivotal results. Size changes in Araucariaceae occurred in both male and female cones, with the largest cones appearing in extant Araucaria. In this genus, different evolutionary models best described cone size changes, with male cone evolution best described by a model not influenced by phylogeny and female cone evolution by a stabilizing selection model with two optima. This resulted in contrasting phylogenetic signals, with female cone size being more phylogenetically structured than male cone size. Conclusions. Changes in cone size in Araucariaceae occurred in both male and female cones. The largest male and female cones appeared in Araucaria through uncoupled evolutionary pathways, both involving a natural selection component as a driver of evolutionary change. A contrasting pattern of phylogenetic signal in male and female cone size reflected the uncoupled evolutionary trajectories followed by these sexual structures.
MODELING STABILIZING SELECTION: EXPANDING THE ORNSTEIN—UHLENBECK MODEL OF ADAPTIVE EVOLUTION
Comparative methods used to study patterns of evolutionary change in a continuous trait on a phylogeny range from Brownian motion processes to models where the trait is assumed to evolve according to an Ornstein—Uhlenbeck (OU) process. Although these models have proved useful in a variety of contexts, they still do not cover all the scenarios biologists want to examine. For models based on the OU process, model complexity is restricted in current implementations by assuming that the rate of stochastic motion and the strength of selection do not vary among selective regimes. Here, we expand the OU model of adaptive evolution to include models that variously relax the assumption of a constant rate and strength of selection. In its most general form, the methods described here can assign each selective regime a separate trait optimum, a rate of stochastic motion parameter, and a parameter for the strength of selection. We use simulations to show that our models can detect meaningful differences in the evolutionary process, especially with larger sample sizes. We also illustrate our method using an empirical example of genome size evolution within a large flowering plant clade.
Integration of Anatomy Ontologies and Evo-Devo Using Structured Markov Models Suggests a New Framework for Modeling Discrete Phenotypic Traits
Modeling discrete phenotypic traits for either ancestral character state reconstruction or morphology-based phylogenetic inference suffers from ambiguities of character coding, homology assessment, dependencies, and selection of adequate models. These drawbacks occur because trait evolution is driven by two key processes—hierarchical and hidden—which are not accommodated simultaneously by the available phylogenetic methods. The hierarchical process refers to the dependencies between anatomical body parts, while the hidden process refers to the evolution of gene regulatory networks (GRNs) underlying trait development. Herein, I demonstrate that these processes can be efficiently modeled using structured Markov models (SMM) equipped with hidden states, which resolves the majority of the problems associated with discrete traits. Integration of SMM with anatomy ontologies can adequately incorporate the hierarchical dependencies, while the use of the hidden states accommodates hidden evolution of GRNs and substitution rate heterogeneity. I assess the new models using simulations and theoretical synthesis. The new approach solves the long-standing “tail color problem,” in which the trait is scored for species with tails of different colors or no tails. It also presents a previously unknown issue called the “two-scientist paradox,” in which the nature of coding the trait and the hidden processes driving the trait’s evolution are confounded; failing to account for the hidden process may result in a bias, which can be avoided by using hidden state models. All this provides a clear guideline for coding traits into characters. This article gives practical examples of using the new framework for phylogenetic inference and comparative analysis. [Anatomy ontology; character; discrete trait; gene regulatory networks; hidden Markov models; homology; lumpability; morphology; structured Markov models.]
Effects of rapid evolution on species coexistence
Increasing evidence for rapid evolution suggests that the maintenance of species diversity in ecological communities may be influenced by more than purely ecological processes. Classic theory shows that interspecific competition may select for traits that increase niche differentiation, weakening competition and thus promoting species coexistence. While empirical work has demonstrated trait evolution in response to competition, if and how evolution affects the dynamics of the competing species—the key step for completing the required eco-evolutionary feedback—has been difficult to resolve. Here, we show that evolution in response to interspecific competition feeds back to change the course of competitive population dynamics of aquatic plant species over 10–15 generations in the field. By manipulating selection imposed by heterospecific competitors in experimental ponds, we demonstrate that (i) interspecific competition drives rapid genotypic change, and (ii) this evolutionary change in one competitor, while not changing the coexistence outcome, causes the population trajectories of the two competing species to converge. In contrast to the common expectation that interspecific competition should drive the evolution of niche differentiation, our results suggest that genotypic evolution resulted in phenotypic changes that altered population dynamics by affecting the competitive hierarchy. This result is consistent with theory suggesting that competition for essential resources can limit opportunities for the evolution of niche differentiation. Our finding that rapid evolution regulates the dynamics of competing species suggests that ecosystems may rely on continuous feedbacks between ecology and evolution to maintain species diversity.
Tempo of trophic evolution and its impact on mammalian diversification
Mammals are characterized by the complex adaptations of their dentition, which are an indication that diet has played a critical role in their evolutionary history. Although much attention has focused on diet and the adaptations of specific taxa, the role of diet in large-scale diversification patterns remains unresolved. Contradictory hypotheses have been proposed, making prediction of the expected relationship difficult. We show that net diversification rate (the cumulative effect of speciation and extinction), differs significantly among living mammals, depending upon trophic strategy. Herbivores diversify fastest, carnivores are intermediate, and omnivores are slowest. The tempo of transitions between the trophic strategies is also highly biased: the fastest rates occur into omnivory from herbivory and carnivory and the lowest transition rates are between herbivory and carnivory. Extant herbivore and carnivore diversity arose primarily through diversification within lineages, whereas omnivore diversity evolved by transitions into the strategy. The ability to specialize and subdivide the trophic niche allowed herbivores and carnivores to evolve greater diversity than omnivores.
Model Inadequacy and Mistaken Inferences of Trait-Dependent Speciation
Species richness varies widely across the tree of life, and there is great interest in identifying ecological, geographic, and other factors that affect rates of species proliferation. Recent methods for explicitly modeling the relationships among character states, speciation rates, and extinction rates on phylogenetic trees—BiSSE, QuaSSE, GeoSSE, and related models—have been widely used to test hypotheses about character state-dependent diversification rates. Here, we document the disconcerting ease with which neutral traits are inferred to have statistically significant associations with speciation rate. We first demonstrate this unfortunate effect for a known model assumption violation: shifts in speciation rate associated with a character not included in the model. We further show that for many empirical phylogenies, characters simulated in the absence of state-dependent diversification exhibit an even higher Type I error rate, indicating that the method is susceptible to additional, unknown model inadequacies. For traits that evolve slowly, the root cause appears to be a statistical framework that does not require replicated shifts in character state and diversification. However, spurious associations between character state and speciation rate arise even for traits that lack phylogenetic signal, suggesting that phylogenetic pseudoreplication alone cannot fully explain the problem. The surprising severity of this phenomenon suggests that many trait-diversification relationships reported in the literature may not be real. More generally, we highlight the need for diagnosing and understanding the consequences of model inadequacy in phylogenetic comparative methods
Adaptive diversification
Understanding the mechanisms driving biological diversity remains a central problem in ecology and evolutionary biology. Traditional explanations assume that differences in selection pressures lead to different adaptations in geographically separated locations. This book takes a different approach and explores adaptive diversification--diversification rooted in ecological interactions and frequency-dependent selection. In any ecosystem, birth and death rates of individuals are affected by interactions with other individuals. What is an advantageous phenotype therefore depends on the phenotype of other individuals, and it may often be best to be ecologically different from the majority phenotype. Such rare-type advantage is a hallmark of frequency-dependent selection and opens the scope for processes of diversification that require ecological contact rather than geographical isolation.
Stasis and convergence characterize morphological evolution in eupolypod II ferns
Background and AimsPatterns of morphological evolution at levels above family rank remain underexplored in the ferns. The present study seeks to address this gap through analysis of 79 morphological characters for 81 taxa, including representatives of all ten families of eupolypod II ferns. Recent molecular phylogenetic studies demonstrate that the evolution of the large eupolypod II clade (which includes nearly one-third of extant fern species) features unexpected patterns. The traditional ‘athyrioid’ ferns are scattered across the phylogeny despite their apparent morphological cohesiveness, and mixed among these seemingly conservative taxa are morphologically dissimilar groups that lack any obvious features uniting them with their relatives. Maximum-likelihood and maximum-parsimony character optimizations are used to determine characters that unite the seemingly disparate groups, and to test whether the polyphyly of the traditional athyrioid ferns is due to evolutionary stasis (symplesiomorphy) or convergent evolution. The major events in eupolypod II character evolution are reviewed, and character and character state concepts are reappraised, as a basis for further inquiries into fern morphology.MethodsCharacters were scored from the literature, live plants and herbarium specimens, and optimized using maximum-parsimony and maximum-likelihood, onto a highly supported topology derived from maximum-likelihood and Bayesian analysis of molecular data. Phylogenetic signal of characters were tested for using randomization methods and fitdiscrete.Key ResultsThe majority of character state changes within the eupolypod II phylogeny occur at the family level or above. Relative branch lengths for the morphological data resemble those from molecular data and fit an ancient rapid radiation model (long branches subtended by very short backbone internodes), with few characters uniting the morphologically disparate clades. The traditional athyrioid ferns were circumscribed based upon a combination of symplesiomorphic and homoplastic characters. Petiole vasculature consisting of two bundles is ancestral for eupolypods II and a synapomorphy for eupolypods II under deltran optimization. Sori restricted to one side of the vein defines the recently recognized clade comprising Rhachidosoraceae through Aspleniaceae, and sori present on both sides of the vein is a synapomorphy for the Athyriaceae sensu stricto. The results indicate that a chromosome base number of x =41 is synapomorphic for all eupolypods, a clade that includes over two-thirds of extant fern species.ConclusionsThe integrated approach synthesizes morphological studies with current phylogenetic hypotheses and provides explicit statements of character evolution in the eupolypod II fern families. Strong character support is found for previously recognized clades, whereas few characters support previously unrecognized clades. Sorus position appears to be less complicated than previously hypothesized, and linear sori restricted to one side of the vein support the clade comprising Aspleniaceae, Diplaziopsidaceae, Hemidictyaceae and Rachidosoraceae – a lineage only recently identified. Despite x =41 being a frequent number among extant species, to our knowledge it has not previously been demonstrated as the ancestral state. This is the first synapomorphy proposed for the eupolypod clade, a lineage comprising 67 % of extant fern species. This study provides some of the first hypotheses of character evolution at the family level and above in light of recent phylogenetic results, and promotes further study in an area that remains open for original observation.