Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
1 result(s) for "model-predictive strategy update"
Sort by:
Direct reciprocity and model-predictive strategy update explain the network reciprocity observed in socioeconomic networks
Network reciprocity has been successfully put forward (since M. A. Nowak and R. May's, 1992, influential paper) as the simplest mechanism-requiring no strategical complexity-supporting the evolution of cooperation in biological and socioeconomic systems. The mechanism is actually the network, which makes agents' interactions localized, while network reciprocity is the property of the underlying evolutionary process to favor cooperation in sparse rather than dense networks. In theoretical models, the property holds under imitative evolutionary processes, whereas cooperation disappears in any network if imitation is replaced by the more rational best-response rule of strategy update. In social experiments, network reciprocity has been observed, although the imitative behavior did not emerge. What did emerge is a form of conditional cooperation based on direct reciprocity-the propensity to cooperate with neighbors who previously cooperated. To resolve this inconsistency, network reciprocity has been recently shown in a model that rationally confronts the two main behaviors emerging in experiments-reciprocal cooperation and unconditional defection-with rationality introduced by extending the best-response rule to a multi-step predictive horizon. However, direct reciprocity was implemented in a non-standard way, by allowing cooperative agents to temporarily cut the interaction with defecting neighbors. Here, we make this result robust to the way cooperators reciprocate, by implementing direct reciprocity with the standard tit-for-tat strategy and deriving similar results.