Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
19,459 result(s) for "molecular breeding"
Sort by:
Transcriptional and post-transcriptional regulation of heading date in rice
Rice is a facultative short day (SD) plant. In addition to serving as a model plant for molecular genetic studies of monocots, rice is a staple crop for about half of the world’s population. Heading date is a critical agronomic trait, and many genes controlling heading date have been cloned over the last 2 decades. The mechanism of flowering in rice from recognition of day length by leaves to floral activation in the shoot apical meristem has been extensively studied. In this review, we summarise current progress on transcriptional and post-transcriptional regulation of heading date in rice, with emphasis on post-translational modifications of key regulators, including Heading date 1 (Hd1), Early heading date 1 (Ehd1), Grain number, plant height, and heading date7 (Ghd7). The contribution of heading date genes to heterosis and the expansion of rice cultivation areas from low-latitude to high-latitude regions are also discussed. To overcome the limitations of diverse genetic backgrounds used in heading date studies and to gain a clearer understanding of flowering in rice, we propose a systematic collection of genetic resources in a common genetic background. Strategies in breeding adapted cultivars by rational design are also discussed.
Impacts, Tolerance, Adaptation, and Mitigation of Heat Stress on Wheat under Changing Climates
Heat stress (HS) is one of the major abiotic stresses affecting the production and quality of wheat. Rising temperatures are particularly threatening to wheat production. A detailed overview of morpho-physio-biochemical responses of wheat to HS is critical to identify various tolerance mechanisms and their use in identifying strategies to safeguard wheat production under changing climates. The development of thermotolerant wheat cultivars using conventional or molecular breeding and transgenic approaches is promising. Over the last decade, different omics approaches have revolutionized the way plant breeders and biotechnologists investigate underlying stress tolerance mechanisms and cellular homeostasis. Therefore, developing genomics, transcriptomics, proteomics, and metabolomics data sets and a deeper understanding of HS tolerance mechanisms of different wheat cultivars are needed. The most reliable method to improve plant resilience to HS must include agronomic management strategies, such as the adoption of climate-smart cultivation practices and use of osmoprotectants and cultured soil microbes. However, looking at the complex nature of HS, the adoption of a holistic approach integrating outcomes of breeding, physiological, agronomical, and biotechnological options is required. Our review aims to provide insights concerning morpho-physiological and molecular impacts, tolerance mechanisms, and adaptation strategies of HS in wheat. This review will help scientific communities in the identification, development, and promotion of thermotolerant wheat cultivars and management strategies to minimize negative impacts of HS.
Development of multiple SNP marker panels affordable to breeders through genotyping by target sequencing (GBTS) in maize
The development of a high-throughput genotyping platform with high quality, flexibility, and affordable genotyping cost is critical for marker-assisted breeding. In this study, a genotyping by target sequencing (GBTS) platform was developed in maize, which can be realized for a small number of markers (several to 5 K) through multiplex PCR (GenoPlexs) and for a large number of markers (1 to 45 K) through in-solution capture. The later was used for development of four SNP marker panels (GenoBaits Maize) containing 20 K, 10 K, 5 K, and 1 K markers. Two genotype panels, one consisting 96 representative worldwide maize inbred lines and the other containing 387 breeding lines developed in our maize breeding programs, were used to test and validate the developed marker panels. First, a 20 K SNP panel, with markers evenly distributed across maize genome, was developed from a 55 K SNP array with improved genome coverage. From this single marker panel, 20 K, 10 K, 5 K, and 1 K SNP markers can be generated by sequencing the samples at the average sequencing depths of 50×, 20×, 7.5×, and 2.5×, respectively. Highly consistent marker genotypes were obtained between the four marker panels and the 55 K array (over 95%) and between two biological replications (over 98%). Also, highly consistent phylogenetic relationships were generated by using four marker panels and two genotype panels, providing strong evidence for the reliability of SNP markers and GBTS genotyping platform. Cost-benefit analysis indicated that the genotypic selection cost based on the GBTS in maize was lower than phenotypic selection, allowing GBTS an affordable genotyping platform for marker-assisted breeding. Integration of this affordable genotyping platform with other breeding platforms and open-source breeding network would greatly facilitate the molecular breeding activities in small- and medium-size companies and developing countries. The four marker panels could be used for many fields of marker application, including germplasm evaluation, genetic mapping, marker-assisted selection (including genomic selection), and plant variety protection.
Draft genome sequence of chickpea (Cicer arietinum) provides a resource for trait improvement
Chickpea (Cicer arietinum) is the second most widely grown legume crop after soybean, accounting for a substantial proportion of human dietary nitrogen intake and playing a crucial role in food security in developing countries. We report the ∼738-Mb draft whole genome shotgun sequence of CDC Frontier, a kabuli chickpea variety, which contains an estimated 28,269 genes. Resequencing and analysis of 90 cultivated and wild genotypes from ten countries identifies targets of both breeding-associated genetic sweeps and breeding-associated balancing selection. Candidate genes for disease resistance and agronomic traits are highlighted, including traits that distinguish the two main market classes of cultivated chickpea - desi and kabuli. These data comprise a resource for chickpea improvement through molecular breeding and provide insights into both genome diversity and domestication. Copyright © 2013 Nature America, Inc.
Bacterial leaf blight resistance in rice: a review of conventional breeding to molecular approach
Breeding for disease resistant varieties remains very effective and economical in controlling the bacterial leaf blight (BLB) of rice. Breeders have played a major role in developing resistant rice varieties against the BLB infection which has been adjudged to be a major disease causing significant yield reduction in rice. It would be difficult to select rice crops with multiple genes of resistance using the conventional approach alone. This is due to masking effect of genes including epistasis. In addition, conventional breeding takes a lot of time before a gene of interest can be introgressed. Linkage drag is also a major challenge in conventional approach. Molecular breeding involving markers has facilitated the characterization and introgression of BLB disease resistance genes. Biotechnology has brought another innovation in form of genetic engineering (transgenesis) of rice. Although, molecular breeding cannot be taken as a substitute for conventional breeding, molecular approach for combating BLB disease in rice is worthwhile given the demand for increased production of rice in a fast growing population of our society. This present article highlights the recent progress from conventional to molecular approach in breeding for BLB disease resistant rice varieties.
Impact of Climate Change on Crops Adaptation and Strategies to Tackle Its Outcome: A Review
Agriculture and climate change are internally correlated with each other in various aspects, as climate change is the main cause of biotic and abiotic stresses, which have adverse effects on the agriculture of a region. The land and its agriculture are being affected by climate changes in different ways, e.g., variations in annual rainfall, average temperature, heat waves, modifications in weeds, pests or microbes, global change of atmospheric CO2 or ozone level, and fluctuations in sea level. The threat of varying global climate has greatly driven the attention of scientists, as these variations are imparting negative impact on global crop production and compromising food security worldwide. According to some predicted reports, agriculture is considered the most endangered activity adversely affected by climate changes. To date, food security and ecosystem resilience are the most concerning subjects worldwide. Climate-smart agriculture is the only way to lower the negative impact of climate variations on crop adaptation, before it might affect global crop production drastically. In this review paper, we summarize the causes of climate change, stresses produced due to climate change, impacts on crops, modern breeding technologies, and biotechnological strategies to cope with climate change, in order to develop climate resilient crops. Revolutions in genetic engineering techniques can also aid in overcoming food security issues against extreme environmental conditions, by producing transgenic plants.
CRISPR/Cas9‐mediated efficient targeted mutagenesis in grape in the first generation
Summary The clustered regularly interspaced short palindromic repeats‐associated protein 9 (CRISPR/Cas9) system is a powerful tool for editing plant genomes. Efficient genome editing of grape (Vitis vinifera) suspension cells using the type II CRISPR/Cas9 system has been demonstrated; however, it has not been established whether this system can be applied to get biallelic mutations in the first generation of grape. In this current study, we designed four guide RNAs for the VvWRKY52 transcription factor gene for using with the CRISPR/Cas9 system, and obtained transgenic plants via Agrobacterium‐mediated transformation, using somatic embryos of the Thompson Seedless cultivar. Analysis of the first‐generation transgenic plants verified 22 mutant plants of the 72 T‐DNA‐inserted plants. Of these, 15 lines carried biallelic mutations and seven were heterozygous. A range of RNA‐guided editing events, including large deletions, were found in the mutant plants, while smaller deletions comprised the majority of the detected mutations. Sequencing of potential off‐target sites for all four targets revealed no off‐target events. In addition, knockout of VvWRKY52 in grape increased the resistance to Botrytis cinerea. We conclude that the CRISPR/Cas9 system allows precise genome editing in the first generation of grape and represents a useful tool for gene functional analysis and grape molecular breeding.
Genetic dissection of maize drought tolerance for trait improvement
Maize is one of the most important crops, but its production is threatened by drought stress worldwide. Thus, increased drought tolerance has been a major goal of maize breeding. Conventional breeding strategies have led to significantly increase of maize yields; however, these strategies often fail to meet the need for drought stress tolerance enhancement. Here, we focus on progress related to the genetic dissection of drought tolerance in maize at different developmental stages achieved through linkage mapping and association mapping. Moreover, recent molecular breeding systems, including transgenic, genome-wide marker-assisted selection, and genome editing technologies, have provided a more direct, efficient, and accurate approach for trait improvement. We also provide perspectives on future directions regarding multi-omics studies and maize improvement. Overall, the application of acquired knowledge will facilitate maize breeding to meet the challenges.
Current trends and insights on EMS mutagenesis application to studies on plant abiotic stress tolerance and development
Ethyl methanesulfonate (EMS)-induced mutagenesis is a powerful tool to generate genetic resource for identifying untapped genes and characterizing the function of genes to understand the molecular basis of important agronomic traits. This review focuses on application of contemporary EMS mutagenesis in the field of plant development and abiotic stress tolerance research, with particular focuses on reviewing the mutation types, mutagenesis site, mutagen concentration, mutagenesis duration, the identification and characterization of mutations responsible for altered stress tolerance responses. The application of EMS mutation breeding combined with genetic engineering in the future plant breeding and fundamental research was also discussed. The collective information in this review will provide good insight on how EMS mutagenesis is efficiently applied to improve abiotic stress tolerance of crops with the utilization of Next-generation sequencing (NGS) for mutation identification.
Comparing genomic selection and marker-assisted selection for Fusarium head blight resistance in wheat (Triticum aestivum L.)
Genomic selection (GS) and marker-assisted selection (MAS) rely on marker–trait associations and are both routinely used for breeding purposes. Although similar, these two approaches differ in their applications and how markers are used to estimate breeding values. In this study, GS and MAS were compared in their ability to predict six traits associated with resistance to a destructive wheat disease, Fusarium head blight (FHB). A panel consisting in 273 soft red winter wheat lines from the US Midwestern and Eastern regions was used in this study. The statistical models for MAS were built using Fhb - 1 , the best-studied quantitative trait loci (QTL) for FHB resistance, and two sets of QTL: one independently identified by other groups and a newer set identified “ in house ”. In contrast, genomic selection models relied on 19,992 SNPs distributed throughout the genome. For the MAS and GS models, marker effects were estimated with ordinary least square and ridge regression best unbiased linear prediction, respectively. Intermediate to high values of prediction accuracy (0.4–0.9) were observed for most GS models, with lower values (<0.3) found for MAS models. Treating QTL as fixed effects in GS models resulted in higher prediction accuracy when compared with a GS model with only random effects, but overestimated accuracies were obtained with in house QTL. For the same selection intensity, GS resulted in higher selection differentials than MAS for all traits. Our results indicate that GS is a more appropriate strategy than MAS for FHB resistance.