Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
4,483 result(s) for "mosses and liverworts"
Sort by:
Genetic analysis of the liverwort Marchantia polymorpha reveals that R2R3MYB activation of flavonoid production in response to abiotic stress is an ancient character in land plants
The flavonoid pathway is hypothesized to have evolved during land colonization by plants c. 450 Myr ago for protection against abiotic stresses. In angiosperms, R2R3MYB transcription factors are key for environmental regulation of flavonoid production. However, angiosperm R2R3MYB gene families are larger than those of basal plants, and it is not known whether the regulatory system is conserved across land plants. We examined whether R2R3MYBs regulate the flavonoid pathway in liverworts, one of the earliest diverging land plant lineages. We characterized MpMyb14 from the liverwort Marchantia polymorpha using genetic mutagenesis, transgenic overexpression, gene promoter analysis, and transcriptomic and chemical analysis. MpMyb14 is phylogenetically basal to characterized angiosperm R2R3MYB flavonoid regulators. Mpmyb14 knockout lines lost all red pigmentation from the flavonoid riccionidin A, whereas overexpression conferred production of large amounts of flavones and riccionidin A, activation of associated biosynthetic genes, and constitutive red pigmentation. MpMyb14 expression and flavonoid pigmentation were induced by light- and nutrient-deprivation stress in M. polymorpha as for anthocyanins in angiosperms. MpMyb14 regulates stress-induced flavonoid production in M. polymorpha, and is essential for red pigmentation. This suggests that R2R3MYB regulated flavonoid production is a conserved character across land plants which arose early during land colonization.
World checklist of hornworts and liverworts
Copyright Lars Söderström et al. This is an open access article distributed under the terms of the Creative Commons Attribution License (CCBY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
The Amborella Genome and the Evolution of Flowering Plants
Amborella trichopoda is strongly supported as the single living species of the sister lineage to all other extant flowering plants, providing a unique reference for inferring the genome content and structure of the most recent common ancestor (MRCA) of living angiosperms. Sequencing the Amborella genome, we identified an ancient genome duplication predating angiosperm diversification, without evidence of subsequent, lineage-specific genome duplications. Comparisons between Amborella and other angiosperms facilitated reconstruction of the ancestral angiosperm gene content and gene order in the MRCA of core eudicots. We identify new gene families, gene duplications, and floral protein-protein interactions that first appeared in the ancestral angiosperm. Transposable elements in Amborella are ancient and highly divergent, with no recent transposon radiations. Population genomic analysis across Amborella's native range in New Caledonia reveals a recent genetic bottleneck and geographic structure with conservation implications.
Xyloglucan is released by plants and promotes soil particle aggregation
Soil is a crucial component of the biosphere and is a major sink for organic carbon. Plant roots are known to release a wide range of carbon-based compounds into soils, including polysaccharides, but the functions of these are not known in detail. Using a monoclonal antibody to plant cell wall xyloglucan, we show that this polysaccharide is secreted by a wide range of angiosperm roots, and relatively abundantly by grasses. It is also released from the rhizoids of liverworts, the earliest diverging lineage of land plants. Using analysis of water-stable aggregate size, dry dispersion particle analysis and scanning electron microscopy, we show that xyloglucan is effective in increasing soil particle aggregation, a key factor in the formation and function of healthy soils. To study the possible roles of xyloglucan in the formation of soils, we analysed the xyloglucan contents of mineral soils of known age exposed upon the retreat of glaciers. These glacial forefield soils had significantly higher xyloglucan contents than detected in a UK grassland soil. We propose that xyloglucan released from plant rhizoids/roots is an effective soil particle aggregator and may, in this role, have been important in the initial colonization of land.
The hornworts
Extant land plants consist of two deeply divergent groups, tracheophytes and bryophytes, which shared a common ancestor some 500 million years ago. While information about vascular plants and the two of the three lineages of bryophytes, the mosses and liverworts, is steadily accumulating, the biology of hornworts remains poorly explored. Yet, as the sister group to liverworts and mosses, hornworts are critical in understanding the evolution of key land plant traits. Until recently, there was no hornwort model species amenable to systematic experimental investigation, which hampered detailed insight into the molecular biology and genetics of this unique group of land plants. The emerging hornwort model species, Anthoceros agrestis, is instrumental in our efforts to better understand not only hornwort biology but also fundamental questions of land plant evolution. To this end, here we provide an overview of hornwort biology and current research on the model plant A. agrestis to highlight its potential in answering key questions of land plant biology and evolution.
Balancing protection and efficiency in the regulation of photosynthetic electron transport across plant evolution
Photosynthetic electron transport requires continuous modulation to maintain the balance between light availability and metabolic demands. Multiple mechanisms for the regulation of electron transport have been identified and are unevenly distributed among photosynthetic organisms. Flavodiiron proteins (FLVs) influence photosynthetic electron transport by accepting electrons downstream of photosystem I to reduce oxygen to water. FLV activity has been demonstrated in cyanobacteria, green algae and mosses to be important in avoiding photosystem I overreduction upon changes in light intensity. FLV-encoding sequences were nevertheless lost during evolution by angiosperms, suggesting that these plants increased the efficiency of other mechanisms capable of accepting electrons from photosystem I, making the FLV activity for protection from overreduction superfluous or even detrimental for photosynthetic efficiency.
Horizontal transfer of entire genomes via mitochondrial fusion in the angiosperm Amborella
We report the complete mitochondrial genome sequence of the flowering plant Amborella trichopoda. This enormous, 3.9-megabase genome contains six genome equivalents of foreign mitochondrial DNA, acquired from green algae, mosses, and other angiosperms. Many of these horizontal transfers were large, including acquisition of entire mitochondrial genomes from three green algae and one moss. We propose a fusion-compatibility model to explain these findings, with Amborella capturing whole mitochondria from diverse eukaryotes, followed by mitochondrial fusion (limited mechanistically to green plant mitochondria) and then genome recombination. Amborella's epiphyte load, propensity to produce suckers from wounds, and low rate of mitochondrial DNA loss probably all contribute to the high level of foreign DNA in its mitochondrial genome.
Organellomic data sets confirm a cryptic consensus on (unrooted) land-plant relationships and provide new insights into bryophyte molecular evolution
Premise Phylogenetic trees of bryophytes provide important evolutionary context for land plants. However, published inferences of overall embryophyte relationships vary considerably. We performed phylogenomic analyses of bryophytes and relatives using both mitochondrial and plastid gene sets, and investigated bryophyte plastome evolution. Methods We employed diverse likelihood‐based analyses to infer large‐scale bryophyte phylogeny for mitochondrial and plastid data sets. We tested for changes in purifying selection in plastid genes of a mycoheterotrophic liverwort (Aneura mirabilis) and a putatively mycoheterotrophic moss (Buxbaumia), and compared 15 bryophyte plastomes for major structural rearrangements. Results Overall land‐plant relationships conflict across analyses, generally weakly. However, an underlying (unrooted) four‐taxon tree is consistent across most analyses and published studies. Despite gene coverage patchiness, relationships within mosses, liverworts, and hornworts are largely congruent with previous studies, with plastid results generally better supported. Exclusion of RNA edit sites restores cases of unexpected non‐monophyly to monophyly for Takakia and two hornwort genera. Relaxed purifying selection affects multiple plastid genes in mycoheterotrophic Aneura but not Buxbaumia. Plastid genome structure is nearly invariant across bryophytes, but the tufA locus, presumed lost in embryophytes, is unexpectedly retained in several mosses. Conclusions A common unrooted tree underlies embryophyte phylogeny, [(liverworts, mosses), (hornworts, vascular plants)]; rooting inconsistency across studies likely reflects substantial distance to algal outgroups. Analyses combining genomic and transcriptomic data may be misled locally for heavily RNA‐edited taxa. The Buxbaumia plastome lacks hallmarks of relaxed selection found in mycoheterotrophic Aneura. Autotrophic bryophyte plastomes, including Buxbaumia, hardly vary in overall structure.
Auxin-mediated developmental control in the moss Physcomitrella patens
Focusing on the model species Physcomitrella patens, we discuss knowledge on auxin-regulated development in mosses. The evidence indicates that auxin regulates similar key processes in mosses and flowering plants Abstract The signalling molecule auxin regulates many fundamental aspects of growth and development in plants. We review and discuss what is known about auxin-regulated development in mosses, with special emphasis on the model species Physcomitrella patens. It is well established that mosses and other early diverging plants produce and respond to auxin. By sequencing the P. patens genome, it became clear that it encodes many core proteins important for auxin homeostasis, perception, and signalling, which have also been identified in flowering plants. This suggests that the auxin molecular network was present in the last common ancestor of flowering plants and mosses. Despite fundamental differences in their life cycles, key processes such as organ initiation and outgrowth, branching, tropic responses, as well as cell differentiation, division, and expansion appear to be regulated by auxin in the two lineages. This knowledge paves the way for studies aimed at a better understanding of the origin and evolution of auxin function and how auxin may have contributed to the evolution of land plants.
Decline in biological soil crust N-fixing lichens linked to increasing summertime temperatures
Biological soil crusts (biocrusts), comprised of mosses, lichens, and cyanobacteria, are key components to many dryland communities. Climate change and other anthropogenic disturbances are thought to cause a decline in mosses and lichens, yet few longterm studies exist to track potential shifts in these sensitive soil-surface communities. Using a unique long-term observational dataset from a temperate dryland with initial observations dating back to 1967, we examine the effects of 53 y of observed environmental variation and Bromus tectorum invasion on biocrust communities in a grassland never grazed by domestic livestock. Annual observations show a steep decline in N-fixing lichen cover (dominated by Collema species) from 1996 to 2002, coinciding with a period of extended drought, with Collema communities never able to recover. Declines in other lichen species were also observed, both in number of species present and by total cover, which were attributed to increasing summertime temperatures. Conversely, moss species gradually gained in cover over the survey years, especially following a large Bromus tectorum invasion at the study onset (ca. 1996 to 2001). These results support a growing body of studies that suggests climate change is a key driver in changes to certain components of late-successional biocrust communities. Results here suggest that warming may partially negate decades of protection from disturbance, with biocrust communities reaching a vital tipping point. The accelerated rate of ongoing warming observed in this study may have resulted in the loss of lichen cover and diversity, which could have long-term implications for global temperate dryland ecosystems.