Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
461 result(s) for "multilayer perceptron (MLP)"
Sort by:
Shuffled Frog Leaping Algorithm and Wind-Driven Optimization Technique Modified with Multilayer Perceptron
The prediction aptitude of an artificial neural network (ANN) is improved by incorporating two novel metaheuristic techniques, namely, the shuffled frog leaping algorithm (SFLA) and wind-driven optimization (WDO), for the purpose of soil shear strength (simply called shear strength) simulation. Soil information of the Trung Luong national expressway project (Vietnam) including depth of the sample (m), percentage of sand, percentage of silt, percentage of clay, percentage of moisture content, wet density (kg/m3), liquid limit (%), plastic limit (%), plastic index (%), liquidity index, and the shear strength (kPa) was collocated through a field survey. After constructing the hybrid ensembles of SFLA–ANN and WDO–ANN, both models were optimized in terms of complexity using a population-based trial-and error-scheme. The learning quality of the ANN was compared with both improved versions to examine the effect of the used metaheuristic techniques. In this phase, the training error dropped by 14.25% and 28.25% by applying the SFLA and WDO, respectively. This reflects a significant improvement in pattern recognition ability of the ANN. The results of the testing data revealed 25.57% and 39.25% decreases in generalization (i.e., testing) error. Moreover, the correlation between the measured and predicted shear strengths (i.e., the coefficient of determination) rose from 0.82 to 0.89 and 0.92, which indicates the efficiency of both SFLA and WDO metaheuristic techniques in optimizing the ANN.
COVID-19 cough classification using machine learning and global smartphone recordings
We present a machine learning based COVID-19 cough classifier which can discriminate COVID-19 positive coughs from both COVID-19 negative and healthy coughs recorded on a smartphone. This type of screening is non-contact, easy to apply, and can reduce the workload in testing centres as well as limit transmission by recommending early self-isolation to those who have a cough suggestive of COVID-19. The datasets used in this study include subjects from all six continents and contain both forced and natural coughs, indicating that the approach is widely applicable. The publicly available Coswara dataset contains 92 COVID-19 positive and 1079 healthy subjects, while the second smaller dataset was collected mostly in South Africa and contains 18 COVID-19 positive and 26 COVID-19 negative subjects who have undergone a SARS-CoV laboratory test. Both datasets indicate that COVID-19 positive coughs are 15%–20% shorter than non-COVID coughs. Dataset skew was addressed by applying the synthetic minority oversampling technique (SMOTE). A leave-p-out cross-validation scheme was used to train and evaluate seven machine learning classifiers: logistic regression (LR), k-nearest neighbour (KNN), support vector machine (SVM), multilayer perceptron (MLP), convolutional neural network (CNN), long short-term memory (LSTM) and a residual-based neural network architecture (Resnet50). Our results show that although all classifiers were able to identify COVID-19 coughs, the best performance was exhibited by the Resnet50 classifier, which was best able to discriminate between the COVID-19 positive and the healthy coughs with an area under the ROC curve (AUC) of 0.98. An LSTM classifier was best able to discriminate between the COVID-19 positive and COVID-19 negative coughs, with an AUC of 0.94 after selecting the best 13 features from a sequential forward selection (SFS). Since this type of cough audio classification is cost-effective and easy to deploy, it is potentially a useful and viable means of non-contact COVID-19 screening. •A machine learning based COVID-19 cough classifier has been developed.•This classifier achieves the highest AUC of 0.98 from a residual based architecture.•Cough audio recordings are collected from all six continents of the globe.•COVID-19 positive coughs are 15% to 20% shorter than non-COVID coughs.•A special feature extraction technique preserves end-to-end time-domain patterns.
A machine learning forecasting model for COVID-19 pandemic in India
Coronavirus disease (COVID-19) is an inflammation disease from a new virus. The disease causes respiratory ailment (like influenza) with manifestations, for example, cold, cough and fever, and in progressively serious cases, the problem in breathing. COVID-2019 has been perceived as a worldwide pandemic and a few examinations are being led utilizing different numerical models to anticipate the likely advancement of this pestilence. These numerical models dependent on different factors and investigations are dependent upon potential inclination. Here, we presented a model that could be useful to predict the spread of COVID-2019. We have performed linear regression, Multilayer perceptron and Vector autoregression method for desire on the COVID-19 Kaggle data to anticipate the epidemiological example of the ailment and pace of COVID-2019 cases in India. Anticipated the potential patterns of COVID-19 effects in India dependent on data gathered from Kaggle. With the common data about confirmed, death and recovered cases across India for over the time length helps in anticipating and estimating the not so distant future. For extra assessment or future perspective, case definition and data combination must be kept up persistently.
An efficient multilayer RBF neural network and its application to regression problems
By combining multilayer perceptrons (MLPs) and radial basis function neural networks (RBF-NNs), an efficient multilayer RBF network is proposed in this work for regression problems. As an extension to the existing multilayer RBF network (RBF-MLP-I), the new multilayer RBF network (RBF-MLP-II) first nonlinearly transforms the multi-dimensional input data by adopting a set of multivariate basis functions. Then, linear weighted sums of these basis functions, i.e., the RBF approximations, are computed in the first hidden layer and used as the features of this layer. Subsequently, in the following hidden layers, each feature of the preceding hidden layer is fed into a univariate RBF characterized by the trainable scalar center and width, and then, RBF approximations are also applied to these basis functions. Finally, the features of the last hidden layer are linearly transformed to approximate the target output data. RBF-MLP-II reduces the number of parameters in basis functions and thus the network complexity of RBF-MLP-I. Verified by four regression problems, it is demonstrated that the proposed RBF-MLP-II exhibits the best approximation accuracy and fastest training convergence compared to conventional MLPs, RBF-NNs, and RBF-MLP-I.
Predicting the future land use and land cover changes for Bhavani basin, Tamil Nadu, India, using QGIS MOLUSCE plugin
Human population growth, movement, and demand have a substantial impact on land use and land cover dynamics. Thematic maps of land use and land cover (LULC) serve as a reference for scrutinizing, source administration, and forecasting, making it easier to establish plans that balance preservation, competing uses, and growth compressions. This study aims to identify the changeover of land-use changes in the Bhavani basin for the two periods 2005 and 2015 and to forecast and establish potential land-use changes in the years 2025 and 2030 by using QGIS 2.18.24 version MOLUSCE plugin (MLP-ANN) model. The five criteria, such as DEM, slope, aspect, distance from the road, and distance from builtup, are used as spatial variable maps in the processes of learning in MLP-ANN to predict their influences on LULC between 2005 and 2010. It was found that DEM, distance from the road, and distance from the builtup have significant effects. The projected and accurate LULC maps for 2015 indicate a good level of accuracy, with an overall Kappa value of 0.69 and a percentage of the correctness of 76.28%. MLP-ANN is then used to forecast changes in LULC for the years 2025 and 2030, which shows a significant rise in cropland and builtup areas, by 20 km 2 and 10 km 2 , respectively. The findings assist farmers and policymakers in developing optimal land use plans and better management techniques for the long-term development of natural resources.
Breast cancer diagnosis using GA feature selection and Rotation Forest
Breast cancer is one of the primary causes of death among the women worldwide, and the accurate diagnosis is one of the most significant steps in breast cancer treatment. Data mining techniques can support doctors in diagnosis decision-making process. In this paper, we present different data mining techniques for diagnosis of breast cancer. Two different Wisconsin Breast Cancer datasets have been used to evaluate the system proposed in this study. The proposed system has two stages. In the first stage, in order to eliminate insignificant features, genetic algorithms are used for extraction of informative and significant features. This process reduces the computational complexity and speed up the data mining process. In the second stage, several data mining techniques are employed to make a decision for two different categories of subjects with or without breast cancer. Different individual and multiple classifier systems were used in the second stage in order to construct accurate system for breast cancer classification. The performance of the methods is evaluated using classification accuracy, area under receiver operating characteristic curves and F -measure. Results obtained with the Rotation Forest model with GA-based 14 features show the highest classification accuracy (99.48 %), and when compared with the previous works, the proposed approach reveals the enhancement in performances. Results obtained in this study have potential to open new opportunities in diagnosis of breast cancer.
Long-Term Evaluation and Calibration of Low-Cost Particulate Matter (PM) Sensor
Low-cost light scattering particulate matter (PM) sensors have been widely researched and deployed in order to overcome the limitations of low spatio-temporal resolution of government-operated beta attenuation monitor (BAM). However, the accuracy of low-cost sensors has been questioned, thus impeding their wide adoption in practice. To evaluate the accuracy of low-cost PM sensors in the field, a multi-sensor platform has been developed and co-located with BAM in Dongjak-gu, Seoul, Korea from 15 January 2019 to 4 September 2019. In this paper, a sample variation of low-cost sensors has been analyzed while using three commercial low-cost PM sensors. Influences on PM sensor by environmental conditions, such as humidity, temperature, and ambient light, have also been described. Based on this information, we developed a novel combined calibration algorithm, which selectively applies multiple calibration models and statistically reduces residuals, while using a prebuilt parameter lookup table where each cell records statistical parameters of each calibration model at current input parameters. As our proposed framework significantly improves the accuracy of the low-cost PM sensors (e.g., RMSE: 23.94 → 4.70 μ g/m 3 ) and increases the correlation (e.g., R 2 : 0.41 → 0.89), this calibration model can be transferred to all sensor nodes through the sensor network.
Optimization of 2024-T3 Aluminum Alloy Friction Stir Welding Using Random Forest, XGBoost, and MLP Machine Learning Techniques
This study optimized friction stir welding (FSW) parameters for 1.6 mm thick 2024T3 aluminum alloy sheets. A 3 × 3 factorial design was employed to explore tool rotation speeds (1100 to 1300 rpm) and welding speeds (140 to 180 mm/min). Static tensile tests revealed the joints’ maximum strength at 87% relative to the base material. Hyperparameter optimization was conducted for machine learning (ML) models, including random forest and XGBoost, and multilayer perceptron artificial neural network (MLP-ANN) models, using grid search. Welding parameter optimization and extrapolation were then carried out, with final strength predictions analyzed using response surface methodology (RSM). The ML models achieved over 98% accuracy in parameter regression, demonstrating significant effectiveness in FSW process enhancement. Experimentally validated, optimized parameters resulted in an FSW joint efficiency of 93% relative to the base material. This outcome highlights the critical role of advanced analytical techniques in improving welding quality and efficiency.
Two-stage improved Grey Wolf optimization algorithm for feature selection on high-dimensional classification
In recent years, evolutionary algorithms have shown great advantages in the field of feature selection because of their simplicity and potential global search capability. However, most of the existing feature selection algorithms based on evolutionary computation are wrapper methods, which are computationally expensive, especially for high-dimensional biomedical data. To significantly reduce the computational cost, it is essential to study an effective evaluation method. In this paper, a two-stage improved gray wolf optimization (IGWO) algorithm for feature selection on high-dimensional data is proposed. In the first stage, a multilayer perceptron (MLP) network with group lasso regularization terms is first trained to construct an integer optimization problem using the proposed algorithm for pre-selection of features and optimization of the hidden layer structure. The dataset is compressed using the feature subset obtained in the first stage. In the second stage, a multilayer perceptron network with group lasso regularization terms is retrained using the compressed dataset, and the proposed algorithm is employed to construct the discrete optimization problem for feature selection. Meanwhile, a rapid evaluation strategy is constructed to mitigate the evaluation cost and improve the evaluation efficiency in the feature selection process. The effectiveness of the algorithm was analyzed on ten gene expression datasets. The experimental results show that the proposed algorithm not only removes almost more than 95.7% of the features in all datasets, but also has better classification accuracy on the test set. In addition, the advantages of the proposed algorithm in terms of time consumption, classification accuracy and feature subset size become more and more prominent as the dimensionality of the feature selection problem increases. This indicates that the proposed algorithm is particularly suitable for solving high-dimensional feature selection problems.