Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
389 result(s) for "multilevel selection"
Sort by:
Multilevel selection 1, multilevel selection 2, and the Price equation: a reappraisal
The distinction between multilevel selection 1 (MLS1) and multilevel selection 2 (MLS2) is classically regarded as a distinction between two multilevel selection processes involving two different kinds of higher-level fitness. It has been invoked to explain evolutionary transitions in individuality as a shift from an MLS1 to an MLS2 process. In this paper, I argue against the view that the distinction involves two different kinds of processes. I show, starting from the MLS2 version of the Price equation, that it contains the MLS1 version if, following the assumption that a collective constitutively depends (i.e., mereologically supervenes) on its particles, one considers that a necessary map between fitness at two levels exists. I defend the necessity of such a map, making the distinction between MLS1 and MLS2 a matter of perspective and limited knowledge (i.e., epistemic limitations) rather than objective facts. I then provide some reasons why the MLS1/MLS2 distinction nonetheless has some pragmatic value and might be invoked usefully in some contexts, particularly within the context of explaining evolutionary transitions in individuality.
TOWARDS A GENERAL THEORY OF GROUP SELECTION
The longstanding debate about the importance of group (multilevel) selection suffers from a lack of formal models that describe explicit selection events at multiple levels. Here, we describe a general class of models for two-level evolutionary processes which include birth and death events at both levels. The models incorporate the state-dependent rates at which these events occur. The models come in two closely related forms: (1) a continuous-time Markov chain, and (2) a partial differential equation (PDE) derived from (1) by taking a limit. We argue that the mathematical structure of this PDE is the same for all models of two-level population processes, regardless of the kinds of events featured in the model. The mathematical structure of the PDE allows for a simple and unambiguous way to distinguish between individual- and group-level events in any two-level population model. This distinction, in turn, suggests a new and intuitively appealing way to define group selection in terms of the effects of group-level events. We illustrate our theory of group selection by applying it to models of the evolution of cooperation and the evolution of simple multicellular organisms, and then demonstrate that this kind of group selection is not mathematically equivalent to individual-level (kin) selection.
TEMPO AND MODE OF MULTICELLULAR ADAPTATION IN EXPERIMENTALLY EVOLVED SACCHAROMYCES CEREVISIAE
Multicellular complexity is a central topic in biology, but the evolutionary processes underlying its origin are difficult to study and remain poorly understood. Here we use experimental evolution to investigate the tempo and mode of multicellular adaptation during a de novo evolutionary transition to multicellularity. Multicelled \"snowflake\" yeast evolved from a unicellular ancestor after 7 days of selection for faster settling through liquid media. Over the next 220 days, snowflake yeast evolved to settle 44% more quickly. Throughout the experiment the clusters evolved faster settling by three distinct modes. The number of cells per cluster increased from a mean of 42 cells after 7 days of selection to 114 cells after 227 days. Between days 28 and 65, larger clusters evolved via a twofold increase in the mass of individual cells. By day 227, snowflake yeast evolved to form more hydrodynamic clusters that settle more quickly for their size than ancestral strains. The timing and nature of adaptation in our experiment suggests that costs associated with large cluster size favor novel multicellular adaptations, increasing organismal complexity.
ALLELOPATHY AS AN EMERGENT, EXPLOITABLE PUBLIC GOOD IN THE BLOOM-FORMING MICROALGA PRYMNESIUM PARVUM
Many microbes cooperatively secrete extracellular products that favorably modify their environment. Consistent with social evolution theory, structured habitats play a role in maintaining these traits in microbial model systems, by localizing the benefits and separating strains that invest in these products from 'cheater' strains that benefit without paying the cost. It is thus surprising that many unicellular, well-mixed microalgal populations invest in extracellular toxins that confer ecological benefits upon the entire population, for example, by eliminating nutrient competitors (allelopathy). Here we test the hypotheses that microalgal exotoxins are (1) exploitable public goods that benefit all cells, regardless of investment, or (2) nonexploitable private goods involved in cell-level functions. We test these hypotheses with high-toxicity (TOX+) and low-toxicity (TOX−) strains of the damaging, mixotrophic microalga Prymnesium parvum and two common competitors: green algae and diatoms. TOX+ actually benefits from dense populations of competing green algae, which can also be prey for P. parvum, yielding a relative fitness advantage over coexisting TOX−. However, with nonprey competitors (diatoms), TOX− increases in frequency over TOX+, despite benefiting from the exclusion of diatoms by TOX+. An evolutionary unstable, ecologically devastating public good may emerge from traits selected at lower levels expressed in novel environments.
SPECIES SELECTION AND THE MACROEVOLUTION OF CORAL COLONIALITY AND PHOTOSYMBIOSIS
Differences in the relative diversification rates of species with variant traits are known as species selection. Species selection can produce a macroevolutionary change in the frequencies of traits by changing the relative number of species possessing each trait over time. But species selection is not the only process that can change the frequencies of traits, phyletic microevolution of traits within species and phylogenetic trait evolution among species, the tempo and mode of microevolution can also change trait frequencies. Species selection, phylogenetic, and phyletic processes can all contribute to large-scale trends, reinforcing or canceling each other out. Even more complex interactions among macroevolutionary processes are possible when multiple covarying traits are involved. Here I present a multilevel macroevolutionary framework that is useful for understanding how macroevolutionary processes interact. It is useful for empirical studies using fossils, molecular phylogenies, or both. I illustrate the framework with the macroevolution of coloniality and photosymbiosis in scleractinian corals using a time-calibrated molecular phylogeny. I find that standing phylogenetic variation in coloniality and photosymbiosis deflects the direction of macroevolution from the vector of species selection. Variation in these traits constrains species selection and results in a 200 million year macroevolutionary equilibrium.
WHEN HAWKS GIVE RISE TO DOVES: THE EVOLUTION AND TRANSITION OF ENFORCEMENT STRATEGIES
The question of how altruism can evolve despite its local disadvantage to selfishness has produced a wealth of theoretical and empirical research capturing the attention of scientists across disciplines for decades. One feature that has remained consistent through this outpouring of knowledge has been that researchers have looked to the altruists themselves for mechanisms by which altruism can curtail selfishness. An alternative perspective may be that just as altruists want to limit selfishness in the population, so may the selfish individuals themselves. These alternative perspectives have been most evident in the fairly recent development of enforcement strategies. Punishment can effectively limit selfishness in the population, but it is not free. Thus, when punishment evolves among altruists, the double costs of exploitation from cheaters and punishment make the evolution of punishment problematic. Here we show that punishment can more readily invade selfish populations when associated with selfishness, whereas altruistic punishers cannot. Thereafter, the establishment of altruism because of enforcement by selfish punishers provides the ideal invasion conditions for altruistic punishment, effectively creating a transition of punishment from selfishness to altruistic. Thus, from chaotic beginnings, a little hypocrisy may go a long way in the evolution and maintenance of altruism.
The role of multilevel selection in host microbiome evolution
Animals are associated with a microbiome that can affect their reproductive success. It is, therefore, important to understand how a host and its microbiome coevolve. According to the hologenome concept, hosts and their microbiome form an integrated evolutionary entity, a holobiont, on which selection can potentially act directly. However, this view is controversial, and there is an active debate on whether the association between hosts and their microbiomes is strong enough to allow for selection at the holobiont level. Much of this debate is based on verbal arguments, but a quantitative framework is needed to investigate the conditions under which selection can act at the holobiont level. Here, we use multilevel selection theory to develop such a framework. We found that selection at the holobiont level can in principle favor a trait that is costly to the microbes but that provides a benefit to the host. However, such scenarios require rather stringent conditions. The degree to which microbiome composition is heritable decays with time, and selection can only act at the holobiont level when this decay is slow enough, which occurs when vertical transmission is stronger than horizontal transmission. Moreover, the host generation time has to be short enough compared with the timescale of the evolutionary dynamics at the microbe level. Our framework thus allows us to quantitatively predict for what kind of systems selection could act at the holobiont level.
Toward major evolutionary transitions theory 2.0
The impressive body of work on the major evolutionary transitions in the last 20 y calls for a reconstruction of the theory although a 2D account (evolution of informational systems and transitions in individuality) remains. Significant advances include the concept of fraternal and egalitarian transitions (lower-level units like and unlike, respectively). Multilevel selection, first without, then with, the collectives in focus is an important explanatory mechanism. Transitions are decomposed into phases of origin, maintenance, and transformation (i.e., further evolution) of the higher level units, which helps reduce the number of transitions in the revised list by two so that it is less top-heavy. After the transition, units show strong cooperation and very limited realized conflict. The origins of cells, the emergence of the genetic code and translation, the evolution of the eukaryotic cell, multicellularity, and the origin of human groups with language are reconsidered in some detail in the light of new data and considerations. Arguments are given why sex is not in the revised list as a separate transition. Some of the transitions can be recursive (e.g., plastids, multicellularity) or limited (transitions that share the usual features of major transitions without a massive phylogenetic impact, such as the micro- and macronuclei in ciliates). During transitions, new units of reproduction emerge, and establishment of such units requires high fidelity of reproduction (as opposed to mere replication).
Kin Selection and Its Critics
Hamilton’s theory of kin selection is the best-known framework for understanding the evolution of social behavior but has long been a source of controversy in evolutionary biology. A recent critique of the theory by Nowak, Tarnita, and Wilson sparked a new round of debate, which shows no signs of abating. In this overview, we highlight a number of conceptual issues that lie at the heart of the current debate. We begin by emphasizing that there are various alternative formulations of Hamilton’s rule, including a general version, which is always true; an approximate version, which assumes weak selection; and a special version, which demands other restrictive assumptions. We then examine the relationship between the neighbor-modulated fitness and inclusive fitness approaches to kin selection. Finally, we consider the often-strained relationship between the theories of kin and multilevel selection.
Multilevel selection on social network traits differs between sexes in experimental populations of forked fungus beetles
Both individual and group behavior can influence individual fitness, but multilevel selection is rarely quantified on social behaviors. Social networks provide a unique opportunity to study multilevel selection on social behaviors, as they describe complex social traits and patterns of interaction at both the individual and group levels. In this study, we used contextual analysis to measure the consequences of both individual network position and group network structure on individual fitness in experimental populations of forked fungus beetles (Bolitotherus cornutus) with two different resource distributions. We found that males with high individual connectivity (strength) and centrality (betweenness) had higher mating success. However, group network structure did not influence their mating success. Conversely, we found that individual network position had no effect on female reproductive success but that females in populations with many social interactions experienced lower reproductive success. The strength of individual-level selection in males and group-level selection in females intensified when resources were clumped together, showing that habitat structure influences multilevel selection. Individual and emergent group social behavior both influence variation in components of individual fitness, but impact the male mating success and female reproductive success differently, setting up intersexual conflicts over patterns of social interactions at multiple levels.