Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Series Title
      Series Title
      Clear All
      Series Title
  • Reading Level
      Reading Level
      Clear All
      Reading Level
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Content Type
    • Item Type
    • Is Full-Text Available
    • Subject
    • Publisher
    • Source
    • Donor
    • Language
    • Place of Publication
    • Contributors
    • Location
89,828 result(s) for "multiple access"
Sort by:
A Survey of NOMA for VLC Systems: Research Challenges and Future Trends
Visible light communication (VLC) has become a promising technology for high data rate communications and an attractive complementary to conventional radio frequency (RF) communication. VLC is a secure, energy efficient and cost-effective technology that exploits the existing infrastructure, particularly in indoor environments, for wireless data transmission. Nevertheless, the main limitation of developing high data rate VLC links is the narrow modulation bandwidth of light-emitting diodes (LEDs), which is in the megahertz range. The power domain nonorthogonal multiple access (PD-NOMA) scheme is envisioned to address several challenges in VLC systems. In this paper, we present a detailed overview of PD-NOMA based VLC systems. Moreover, we introduce insights on some PD-NOMA VLC system constraints and challenges such as power allocation, clipping effect, MIMO and security. Finally, we provide open research problems as well as possible directions for future research to pave the way for the implementation of PD-NOMA VLC systems.
The foundations of the digital wireless world : selected works of A J Viterbi
\"Professor Andrew J. Viterbi has been extremely influential in the communications field via his invention of the Viterbi Algorithm, and his championing of CDMA technology developed by his company Qualcomm Inc. This book presents a selection of papers personally selected by him to mark his key technical contributions and his thoughts on CDMA technology as it evolved.\"--Jacket.
A Comprehensive Survey on AI-Assisted Multiple Access Enablers for 6G and beyond Wireless Networks
The envisioned 6G wireless networks demand advanced Multiple Access (MA) schemes capable of supporting ultra-low latency, massive connectivity, high spectral efficiency, and energy efficiency (EE), especially as the current 5G networks have not achieved the promised 5G goals, including the projected 2000 times EE improvement over the legacy 4G Long Term Evolution (LTE) networks. This paper provides a comprehensive survey of Artificial Intelligence (AI)-enabled MA techniques, emphasizing their roles in Spectrum Sensing (SS), Dynamic Resource Allocation (DRA), user scheduling, interference mitigation, and protocol adaptation. In particular, we systematically analyze the progression of traditional and modern MA schemes, from Orthogonal Multiple Access (OMA)-based approaches like Time Division Multiple Access (TDMA) and Frequency Division Multiple Access (FDMA) to advanced Non-Orthogonal Multiple Access (NOMA) methods, including power domain-NOMA, Sparse Code Multiple Access (SCMA), and Rate Splitting Multiple Access (RSMA). The study further categorizes AI techniques—such as Machine Learning (ML), Deep Learning (DL), Reinforcement Learning (RL), Federated Learning (FL), and Explainable AI (XAI)—and maps them to practical challenges in Dynamic Spectrum Management (DSM), protocol optimization, and real-time distributed decision-making. Optimization strategies, including metaheuristics and multi-agent learning frameworks, are reviewed to illustrate the potential of AI in enhancing energy efficiency, system responsiveness, and cross-layer RA. Additionally, the review addresses security, privacy, and trust concerns, highlighting solutions like privacy-preserving ML, FL, and XAI in 6G and beyond. By identifying research gaps, challenges, and future directions, this work offers a structured resource for researchers and practitioners aiming to integrate AI into 6G MA systems for intelligent, scalable, and secure wireless communications.
Active device detection and performance analysis of massive non-orthogonal transmissions in cellular Internet of Things
This paper investigates multiple access schemes for uplink and downlink transmissions in cellular networks with massive Internet of Things (IoT) devices. Recall that single-carrier frequency division multiple access and orthogonal frequency division multiple access, which are orthogonal multiple access (OMA) schemes, have been conventionally adopted for uplink and downlink transmissions in narrow-band IoT, respectively. Unlike these OMA schemes, we propose two non-orthogonal multiple access (NOMA) schemes for cellular IoT with short-packet transmissions. Especially, a generalized expectation consistent signal recovery-based algorithm is proposed to estimate active devices, channel state information and data in uplink transmission, where all of the active devices are allowed to transmit their pilots and data through the same resource block without authorization. On the other hand, the active devices estimated during uplink transmission are grouped for downlink transmission with a trade-off between performance and detection complexity. Additionally, the data error rates are analysed for both uplink and downlink transmissions with low-resolution analog-to-digital converters (ADCs), where the effects of critical parameters such as the estimation error, ADC bits, packet length, and message bits are revealed. Both simulation and analytical results are provided to demonstrate the excellent performance of the proposed NOMA schemes and algorithms, especially for active device, channel, and data estimations. More importantly, the obtained results show that the data error rate performance of downlink NOMA is superior to that of OMA when the message bits of devices in one group are selected following the proposed strategy.
Downlink AP coordination based OFDMA and NOMA protocols for the next-generation WLANs
In recent years, with the increasing number of terminal connections, high-density deployment scenarios have become important scenarios for future wireless networks. Ultra-high throughput (EHT) in high density deployment scenarios is the technical goal of IEEE 802.11be, the next-generation wireless local area network (WLAN) standard. However, in a high-density deployment scenario, interference suppression between BSSs is serious, which seriously affects the throughput of a WLAN. And the resources available are limited. Therefore, for the next generation WLAN standard, this paper proposes a downlink transmission scheme based on AP coordination and the orthogonal frequency division multiple access (OFDMA) protocol and the non-orthogonal multiple access (NOMA) protocol, named Co-OFDMA–NOMA scheme. The core idea is to transform the interference and suppression relationship between neighboring BSSs into the relationship of mutual coordination and assistance through the Co-OFDMA–NOMA protocol proposed in this paper. Firstly, a downlink transmission scheme named the Co-OFDMA–NOMA protocol is designed. In addition, the protocol and its framework structure have good backward compatibility. Theoretical analysis shows that the proposed Co-OFDMA–NOMA protocol has significant performance gain, and simulation results prove the effectiveness of the scheme.
Rate-splitting multiple access for downlink communication systems: bridging, generalizing, and outperforming SDMA and NOMA
Space-division multiple access (SDMA) utilizes linear precoding to separate users in the spatial domain and relies on fully treating any residual multi-user interference as noise. Non-orthogonal multiple access (NOMA) uses linearly precoded superposition coding with successive interference cancellation (SIC) to superpose users in the power domain and relies on user grouping and ordering to enforce some users to fully decode and cancel interference created by other users.In this paper, we argue that to efficiently cope with the high throughput, heterogeneity of quality of service (QoS), and massive connectivity requirements of future multi-antenna wireless networks, multiple access design needs to depart from those two extreme interference management strategies, namely fully treat interference as noise (as in SDMA) and fully decode interference (as in NOMA).Considering a multiple-input single-output broadcast channel, we develop a novel multiple access framework, called rate-splitting multiple access (RSMA). RSMA is a more general and more powerful multiple access for downlink multi-antenna systems that contains SDMA and NOMA as special cases. RSMA relies on linearly precoded rate-splitting with SIC to decode part of the interference and treat the remaining part of the interference as noise. This capability of RSMA to partially decode interference and partially treat interference as noise enables to softly bridge the two extremes of fully decoding interference and treating interference as noise and provides room for rate and QoS enhancements and complexity reduction.The three multiple access schemes are compared, and extensive numerical results show that RSMA provides a smooth transition between SDMA and NOMA and outperforms them both in a wide range of network loads (underloaded and overloaded regimes) and user deployments (with a diversity of channel directions, channel strengths, and qualities of channel state information at the transmitter). Moreover, RSMA provides rate and QoS enhancements over NOMA at a lower computational complexity for the transmit scheduler and the receivers (number of SIC layers).
A Tutorial on Nonorthogonal Multiple Access for 5G and Beyond
Today’s wireless networks allocate radio resources to users based on the orthogonal multiple access (OMA) principle. However, as the number of users increases, OMA based approaches may not meet the stringent emerging requirements including very high spectral efficiency, very low latency, and massive device connectivity. Nonorthogonal multiple access (NOMA) principle emerges as a solution to improve the spectral efficiency while allowing some degree of multiple access interference at receivers. In this tutorial style paper, we target providing a unified model for NOMA, including uplink and downlink transmissions, along with the extensions to multiple input multiple output and cooperative communication scenarios. Through numerical examples, we compare the performances of OMA and NOMA networks. Implementation aspects and open issues are also detailed.
Secrecy Offloading of UAV-Assisted MEC Cooperative Hybrid NOMA-TDMA Framework with Friendly Jammer in IoT Network
The surging demand for Internet of Things applications requires efficient resource allocation and security robustness to safeguard sensitive data from eavesdropping threats. Hence, this article investigates the efficacy of secrecy data offloading in a system that employs unmanned aerial vehicle (UAV)-assisted mobile-edge computing. To concurrently enhance the system’s secure performance and mitigate the passive aerial eavesdropper (PAE)’s impact, the system incorporates a hybrid non-orthogonal multiple access (NOMA)-timedivision multiple access (TDMA) framework along with the deployment of a friendly jammer (FJ). To assess the system’s secrecy offloading performance, the closed-form expression of a metric termed secrecy successful computation probability (SSCP) is derived that considers the implications of imperfect channel state information (iCSI) and imperfect successive interference cancellation (iSIC) for practical model evaluation. Additionally, an optimization approach, grounded on Ananya algorithm, is formulated with the objective of maximizing SSCP by establishing UAV’s locations and altitude, the power-allocation ratio (PAR), and the offloading ratio. Numerical findings are implemented by considering a variety of parameters including the transmission power of edge devices (EDs) and FJ, iCSI–iSIC scenarios, UAV’s locations and altitude, task-bits lengths, the system bandwidth, fading parameters, the PAR, and the offloading ratio. Eventually, comparative findings demonstrate the hybrid NOMA-TDMA scenario’s superiority, while also highlighting Ananya algorithm effectiveness on enhancing the multi-user system’s secrecy offloading efficacy.
Adaptive Clustering of Users in Power Domain NOMA
By enabling multiple non-orthogonal transmissions, power domain non-orthogonal multiple access (PD-NOMA) potentially increases a system’s spectral efficiency. This technique can become an alternative for future generations of wireless communication networks. The efficiency of this method fundamentally depends on two previous processing steps: an appropriate grouping of users (transmission candidates) as a function of the channel gains and the choice of power levels that will be used to transmit each signal. Thus far, the solutions presented in the literature to address the problems of user clustering and power allocation do not consider the dynamics of communication systems, i.e., the temporal variation in the number of users and the channel conditions. In order to consider these dynamic characteristics in the clustering of users in NOMA systems, this work proposes a new clustering technique based on a modification of the DenStream evolutionary algorithm, chosen for its evolutionary capacity, noise robustness and online processing. We evaluated the performance of the proposed clustering technique considering, for simplicity, the use of an already widely known power allocation strategy called improved fractional strategy power allocation (IFSPA). The results show that the proposed clustering technique can follow the system dynamics, clustering all users and favoring the uniformity of the transmission rate between the clusters. Compared to orthogonal multiple access (OMA) systems, the proposed model’s gain was approximately 10%, obtained on a challenging communication scenario for NOMA systems since the channel model adopted does not favor a large difference in the channel gains between users.