Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
600 result(s) for "nano- and microplastics"
Sort by:
Nano- and Microplastics Migration from Plastic Food Packaging into Dairy Products: Impact on Nutrient Digestion, Absorption, and Metabolism
The ongoing use of plastic polymers to manufacture food packaging has raised concerns about the presence of nano- and microplastics (NMPs) in a variety of foods. This review provides the most recent data on NMPs’ migration from plastic packaging into dairy products. Also discussed are the possible effects of NMPs on nutrient digestion, absorption, and metabolism. Different kinds of dairy products, including skimmed milk, whole liquid milk, powder milk, and infant formula milk, have been found to contain NMPs of various sizes, shapes, and concentrations. NMPs may interact with proteins, carbohydrates, and fats and have a detrimental impact on how well these nutrients are digested and absorbed by the body. The presence of NMPs in the gastrointestinal tract may impact how lipids, proteins, glucose, iron, and energy are metabolized, increasing the risk of developing various health conditions. In addition to NMPs, plastic oligomers released from food packaging material have been found to migrate to various foods and food simulants, though information regarding their effect on human health is limited. Viewpoints on potential directions for future studies on NMPs and their impact on nutrient digestion, absorption, and health are also presented in this review.
A Review of Persistent Soil Contaminants: Assessment and Remediation Strategies
The presence of persistent contaminants in soils is of growing concern around the world. Contaminated soils can affect numerous ecological environments and lead to significant health risks to humans, affecting soil biodiversity, structure and geomechanical behaviour and agricultural sustainability. Additionally, soil contaminants can also leach into water flows, which is another concern. In general, soil contamination can be attributed to natural sources or to anthropogenic sources associated with human activity. Soil contaminants are usually classified in the following categories: biological, radioactive, organic and inorganic contaminants. State of the art information regarding some of the most common persistent soil contaminants, including possible sources and prevalence, and monitoring approaches and information about their effects on soil characteristics, including usability, as well as information on possible mobility to other environmental media is presented in this review paper. Finally, a comprehensive overview of remediation strategies which are being developed, including the more traditional ones as well as novel strategies that have been proposed lately by the scientific community, is provided. This includes physicochemical and biological technologies, as well as mixed remediation technologies aimed at enhancing remediation efficiency.
A Comparison of Methods to Quantify Nano- and/or Microplastic (NMPs) Deposition in Wild-Caught Eastern Oysters (Crassostrea virginica) Growing in a Heavily Urbanized, Subtropical Estuary (Galveston Bay, USA)
Nano- and microplastics (NMPs) in waterways reflect the impact of anthropogenic activities. This study examined spatial variations in the presence and types of NMPs in Galveston Bay (Texas, USA) surface waters and eastern oysters (Crassostrea virginica). The results reveal most MPs carried by surface waters are fibers > films > fragments. Up to 200 MPs were present in individual oysters [=1.88 (± 0.22 SE) per g wet weight]. Oyster health, based on condition index, varied spatially, but was not correlated with MP load. Based on attenuated total reflectance—Fourier-transform infrared spectroscopy, polyamide and polypropylene were frequently found in waters in the upper bay while ethylene propylene and polyethylene terephthalate were more common in the lower parts of the bay. Pyrolysis–gas chromatography–mass spectrometry revealed a very large range in concentrations of NMPs, from 28 to 10,925 µg ∑NMP/g wet weight (or 172 to 67,783 µg ∑NMP/g dry weight) in oysters. This chemical analysis revealed four main types of plastics present in oysters regardless of location: polypropylene, nylon 66, polyethylene and styrene butadiene rubber. Based on this finding, the average daily intake of NMPs estimated for adult humans is 0.85 ± 0.45 mg NMPs/Kg of body weight/day or a yearly intake of 310 ± 164 mg NMPs/Kg of body weight/year. These findings reveal higher body burdens of plastics in oysters are revealed by the chemical analysis relative to the traditional approach; this is not unexpected given the higher sensitivity and selectivity of mass spectrometry and inclusion of the nanoplastic particle range (i.e., <1 mm) in the sample preparation and analysis.
Recent advances and future technologies in nano-microplastics detection
The degradation of mismanaged plastic waste in the environment results in the formation of microplastics (MPs) and nanoplastics (NPs), which pose significant risks to ecosystems and human health. These particles are pervasive, detected even in remote regions, and can enter the food chain, accumulating in organisms and causing harm depending on factors such as particle load, exposure dose, and the presence of co-contaminants. Detecting and analyzing NMPs present unique challenges, particularly as particle size decreases, making them increasingly difficult to identify. Moreover, the absence of standardized protocols for their detection and analysis further hinders comprehensive assessments of their environmental and biological impacts. This review provides a detailed overview of the latest advancements in technologies for sampling, separation, measurement, and quantification of NMPs. It highlights promising approaches, supported by practical examples from recent studies, while critically addressing persistent challenges in sampling, characterization, and analysis. This work examines cutting-edge developments in nanotechnology-based detection, integrated spectro-microscopic techniques, and AI-driven classification algorithms, offering solutions to bridge gaps in NMP research. By exploring state-of-the-art methodologies and presenting future perspectives, this review provides valuable insights for improving detection capabilities at the micro- and nanoscale, enabling more effective analysis across diverse environmental contexts.
Current Aspects on the Plastic Nano- and Microparticles Toxicity in Zebrafish—Focus on the Correlation between Oxidative Stress Responses and Neurodevelopment
Recent reports focusing on the extent of plastic pollution have shown that many types of fibers and polymers can now be found in most marine species. The severe contamination of plastic nano-/microparticles (NPs/MPs) mainly results in immediate negative outcomes, such as organic impairments and tissue damage, as well as long-termed negative effects, such as developmental retardation and defects, chronic inflammation, oxidative stress (OS), metabolic imbalance, mutagenesis, and teratogenesis. Oxidative responses are currently considered the first line molecular signal to potential toxic stimuli exposure, as the oxidative balance in electron exchange and reactive oxygen species signaling provides efficient harmful stimuli processing. Abnormal signaling or dysregulated ROS metabolism—OS—could be an important source of cellular toxicity, the source of a vicious cycle of environmental and oxidative signaling-derived toxicity. As chemical environmental pollutants, plastic NPs/MPs can also be a cause of such toxicity. Thus, we aimed to correlate the possible toxic effects of plastic NPs/MPs in zebrafish models, by focusing on OS and developmental processes. We found that plastic NPs/MPs toxic effects could be observed during the entire developmental span of zebrafish in close correlation with OS-related changes. Excessive ROS production and decreased antioxidant enzymatic defense due to plastic NPs/MPs exposure and accumulation were frequently associated with acetylcholinesterase activity inhibition, suggesting important neurodevelopmental negative outcomes (cognitive abnormalities, neurodevelopmental retardation, behavioral impairments) and extraneuronal effects, such as impaired digestive physiology.
Mechanisms of Generation and Ecological Impacts of Nano- and Microplastics from Artificial Turf Systems in Sports Facilities
The worldwide adoption of artificial turf in sports facilities and urban landscapes, alongside the systematic transition from natural grass and soil-based grounds, has raised growing concerns about its contribution to the significant source of nano- and microplastics in ecosystems. This review examines current knowledge on the mechanisms of nano- and microplastic generation from artificial turf systems and their environmental impacts. Combined mechanical stress, ultra-violet radiation, and weathering processes contribute to the breakdown of synthetic grass fibers and infill materials, generating particles ranging from nanometer to millimeter scales. These nano- and microplastics are detected in drainage systems and surrounding soils near sports facilities. Laboratory studies demonstrate that artificial turf-derived nano- and microplastics can adversely affect soil microbial communities, aquatic organisms, and potentially human health, through various exposure pathways. While current mitigation approaches include hybrid turf, particle retention systems, and improved maintenance protocols, emerging research focuses on developing novel, environmentally friendly materials as alternatives to conventional synthetic turf components. However, field data on emission rates and environmental fate remain limited, and standardized methods for particle characterization and quantification are lacking. This review identifies critical knowledge gaps, underscoring the need for comprehensive research on long-term ecological impacts and highlights the future goal of mitigating nano- and microplastic emissions from artificial turf systems into the ecosystem.
The plastic brain: neurotoxicity of micro- and nanoplastics
Given the global abundance and environmental persistence, exposure of humans and (aquatic) animals to micro- and nanoplastics is unavoidable. Current evidence indicates that micro- and nanoplastics can be taken up by aquatic organism as well as by mammals. Upon uptake, micro- and nanoplastics can reach the brain, although there is limited information regarding the number of particles that reaches the brain and the potential neurotoxicity of these small plastic particles. Earlier studies indicated that metal and metal-oxide nanoparticles, such as gold (Au) and titanium dioxide (TiO 2 ) nanoparticles, can also reach the brain to exert a range of neurotoxic effects. Given the similarities between these chemically inert metal(oxide) nanoparticles and plastic particles, this review aims to provide an overview of the reported neurotoxic effects of micro- and nanoplastics in different species and in vitro. The combined data, although fragmentary, indicate that exposure to micro- and nanoplastics can induce oxidative stress, potentially resulting in cellular damage and an increased vulnerability to develop neuronal disorders. Additionally, exposure to micro- and nanoplastics can result in inhibition of acetylcholinesterase activity and altered neurotransmitter levels, which both may contribute to the reported behavioral changes. Currently, a systematic comparison of the neurotoxic effects of different particle types, shapes, sizes at different exposure concentrations and durations is lacking, but urgently needed to further elucidate the neurotoxic hazard and risk of exposure to micro- and nanoplastics.
Differentially charged nanoplastics demonstrate distinct accumulation in Arabidopsis thaliana
Although the fates of microplastics (0.1–5 mm in size) and nanoplastics (<100 nm) in marine environments are being increasingly well studied1,2, little is known about the behaviour of nanoplastics in terrestrial environments3–6, especially agricultural soils7. Previous studies have evaluated the consequences of nanoplastic accumulation in aquatic plants, but there is no direct evidence for the internalization of nanoplastics in terrestrial plants. Here, we show that both positively and negatively charged nanoplastics can accumulate in Arabidopsis thaliana. The aggregation promoted by the growth medium and root exudates limited the uptake of amino-modified polystyrene nanoplastics with positive surface charges. Thus, positively charged nanoplastics accumulated at relatively low levels in the root tips, but these nanoplastics induced a higher accumulation of reactive oxygen species and inhibited plant growth and seedling development more strongly than negatively charged sulfonic-acid-modified nanoplastics. By contrast, the negatively charged nanoplastics were observed frequently in the apoplast and xylem. Our findings provide direct evidence that nanoplastics can accumulate in plants, depending on their surface charge. Plant accumulation of nanoplastics can have both direct ecological effects and implications for agricultural sustainability and food safety.The accumulation of nanoplastics in terrestrial plants is directly linked to the nanoparticles’ charge and can have ecological effects and implications for agricultural sustainability and food safety.
Microplastic fragmentation by rotifers in aquatic ecosystems contributes to global nanoplastic pollution
The role of aquatic organisms in the biological fragmentation of microplastics and their contribution to global nanoplastic pollution are poorly understood. Here we present a biological fragmentation pathway that generates nanoplastics during the ingestion of microplastics by rotifers, a commonly found and globally distributed surface water zooplankton relevant for nutrient recycling. Both marine and freshwater rotifers could rapidly grind polystyrene, polyethylene and photo-aged microplastics, thus releasing smaller particulates during ingestion. Nanoindentation studies of the trophi of the rotifer chitinous mastax revealed a Young’s modulus of 1.46 GPa, which was higher than the 0.79 GPa for polystyrene microparticles, suggesting a fragmentation mechanism through grinding the edges of microplastics. Marine and freshwater rotifers generated over 3.48 × 10 5 and 3.66 × 10 5 submicrometre particles per rotifer in a day, respectively, from photo-aged microplastics. Our data suggest the ubiquitous occurrence of microplastic fragmentation by different rotifer species in natural aquatic environments of both primary and secondary microplastics of various polymer compositions and provide previously unidentified insights into the fate of microplastics and the source of nanoplastics in global surface waters. Here the authors show that the trophi or jaws of the chitinous masticatory apparatus of marine and freshwater zooplankton rotifers can grind microplastics, independent of polymer composition, and generate particulate nanoplastics, which may accelerate the nanoplastic flux in global surface waters.
Microplastics: A Real Global Threat for Environment and Food Safety: A State of the Art Review
Microplastics are small plastic particles that come from the degradation of plastics, ubiquitous in nature and therefore affect both wildlife and humans. They have been detected in many marine species, but also in drinking water and in numerous foods, such as salt, honey and marine organisms. Exposure to microplastics can also occur through inhaled air. Data from animal studies have shown that once absorbed, plastic micro- and nanoparticles can distribute to the liver, spleen, heart, lungs, thymus, reproductive organs, kidneys and even the brain (crosses the blood–brain barrier). In addition, microplastics are transport operators of persistent organic pollutants or heavy metals from invertebrate organisms to other higher trophic levels. After ingestion, the additives and monomers in their composition can interfere with important biological processes in the human body and can cause disruption of the endocrine, immune system; can have a negative impact on mobility, reproduction and development; and can cause carcinogenesis. The pandemic caused by COVID-19 has affected not only human health and national economies but also the environment, due to the large volume of waste in the form of discarded personal protective equipment. The remarkable increase in global use of face masks, which mainly contain polypropylene, and poor waste management have led to worsening microplastic pollution, and the long-term consequences can be extremely devastating if urgent action is not taken.