Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
43 result(s) for "near-wall turbulence"
Sort by:
Testing of 2D Differential RANS Models by the Example of Heating the Surface of a Sharp Plate in Supersonic Flow
The Coakley “ q– ω” and Chien “ k– ε” low-Reynolds differential models are used together with the two-dimensional Reynolds-averaged Navier–Stokes (RANS) equations to interpret experimental data on heating and friction on the surface of a sharp plate in the turbulent boundary layer. The problems of choosing the boundary of the turbulent boundary layer and the specifics of the numerical integration of the RANS-model equations at a vanishingly low level of turbulent pulsations in the free-stream gas flow are analyzed.
Calibration of a Near-Wall Differential Reynolds Stress Model Using the Updated Direct Numerical Simulation Data and Its Assessment
In the article, a differential Reynolds stress model is recalibrated using turbulent channel flow direct numerical simulation data in the range of friction Reynolds numbers 550–5200. The calibration aims to produce a RANS sublayer model for use within the hybrid RANS/LES framework. The model is designed to capture the average field of a thin near-wall part of a boundary layer as accurately as possible. An a posteriori procedure is employed in which one-dimensional channel flow calculations are performed for all variations of the model coefficients at each stage of the optimization procedure. The coefficients are initialized with their original values and then optimized by minimizing the appropriately chosen norm. An improved representation of the mean velocity profile and peak Reynolds stress values is demonstrated. Both models—baseline and recalibrated—are implemented in an in-house CFD code, and several simulations, including a channel flow, a flat plate boundary layer and a boundary layer separation from a rounded step, are performed. The latter benchmark flow is also simulated in hybrid RANS/LES mode. The updated model is compared to the original one, demonstrating improvements over the baseline model in the cases it was designed for.
Large-Eddy Simulation of the Atmospheric Boundary Layer with Near-Wall Resolved Turbulence
In this study, a large-eddy simulation (LES) code with the one-dimensional turbulence (ODT) wall model is tested for the simulation of the atmospheric boundary layer under neutral, stable, unstable and free-convection conditions. The ODT model provides a vertically refined flow field near the wall, which has small-scale fluctuations from the ODT stochastic turbulence model and an extension of the LES large-scale coherent structures. From this additional field, the lower boundary conditions needed by LES can be extracted. Results are compared to the LES using the classical algebraic wall model based on the Monin–Obukhov similarity theory (MOST), showing similar results in most of the domain with improvements in horizontal velocity and temperature spectra in the near-wall region for simulations of the neutral/stable/unstable cases. For the free-convection test, spectra from the ODT part of the flow were directly compared to spectra generated by LES-MOST at the same height, showing similar behaviour despite some degradation. Furthermore, the additional flow field improved the near-wall vertical velocity skewness for the unstable/free-convection cases. The tool is demonstrated to provide adequate results without the need of any case-specific parameter tuning. Future studies involving complex physicochemical processes at the surface (such as the presence of vertically distributed sources and sinks of matter and energy) within a large domain are likely to benefit from this tool.
Transition in boundary layers subject to free-stream turbulence
The effect of high levels of free-stream turbulence on the transition in a Blasius boundary layer is studied by means of direct numerical simulations, where a synthetic turbulent inflow is obtained as superposition of modes of the continuous spectrum of the Orr–Sommerfeld and Squire operators. In the present bypass scenario the flow in the boundary layer develops streamwise elongated regions of high and low streamwise velocity and it is suggested that the breakdown into turbulent spots is related to local instabilities of the strong shear layers associated with these streaks. Flow structures typical of the spot precursors are presented and these show important similarities with the flow structures observed in previous studies on the secondary instability and breakdown of steady symmetric streaks. Numerical experiments are performed by varying the energy spectrum of the incoming perturbation. It is shown that the transition location moves to lower Reynolds numbers by increasing the integral length scale of the free-stream turbulence. The receptivity to free-stream turbulence is also analysed and it is found that two distinct physical mechanisms are active depending on the energy content of the external disturbance. If low-frequency modes diffuse into the boundary layer, presumably at the leading edge, the streaks are induced by streamwise vorticity through the linear lift-up effect. If, conversely, the free-stream perturbations are mainly located above the boundary layer a nonlinear process is needed to create streamwise vortices inside the shear layer. The relevance of the two mechanisms is discussed.
Analysis of Near-wall Coherent Structure of Spiral Flow in Circular Pipe Based on Large Eddy Simulation
Based on the large eddy simulation method, this study performed the three-dimensional transient numerical analysis of the near-wall flow field of the spiral flow in a circular pipe and applied the sub-grid model of the kinetic energy transport. The low-speed bands, streamwise vortices and hairpin vortices of the spiral flow in the near-wall region of the circular pipe are determined using the Q criterion. The ejection and sweeping of coherent structures are identified using the velocity vector of the near-wall region; moreover, the two methods of creating the hairpin vortices are established by the image time series. The results demonstrate that the development directions of the near-wall bands, streamwise vortices and hairpin vortices of the spiral flow in the circular pipe develop along the path of the spiral line. The average spanwise period of the low-speed bands in the near-wall region is approximately 120 wall units, the length is more than 900 wall units and the height is not more than 40 wall units. The separation distance of the streamwise vortices is about 119 wall units. It has a certain angle with the wall (approximately 22°). The average burst period of a hairpin vortices is less than 0.015 s.
Marginally turbulent flow in a square duct
A direct numerical simulation of turbulent flow in a straight square duct was performed in order to determine the minimal requirements for self-sustaining turbulence. It was found that turbulence can be maintained for values of the bulk Reynolds number above approximately 1100, corresponding to a friction-velocity-based Reynolds number of 80. The minimum value for the streamwise period of the computational domain is around 190 wall units, roughly independently of the Reynolds number. We present a characterization of the flow state at marginal Reynolds numbers which substantially differs from the fully turbulent one: the marginal state exhibits a four-vortex secondary flow structure alternating in time whereas the fully turbulent one presents the usual eight-vortex pattern. It is shown that in the regime of marginal Reynolds numbers buffer-layer coherent structures play a crucial role in the appearance of secondary flow of Prandtl's second kind.
On the breakdown of boundary layer streaks
A scenario of transition to turbulence likely to occur during the development of natural disturbances in a flat-plate boundary layer is studied. The perturbations at the leading edge of the flat plate that show the highest potential for transient energy amplification consist of streamwise aligned vortices. Due to the lift-up mechanism these optimal disturbances lead to elongated streamwise streaks downstream, with significant spanwise modulation. Direct numerical simulations are used to follow the nonlinear evolution of these streaks and to verify secondary instability calculations. The theory is based on a linear Floquet expansion and focuses on the temporal, inviscid instability of these flow structures. The procedure requires integration in the complex plane, in the coordinate direction normal to the wall, to properly identify neutral modes belonging to the discrete spectrum. The streak critical amplitude, beyond which streamwise travelling waves are excited, is about 26% of the free-stream velocity. The sinuous instability mode (either the fundamental or the subharmonic, depending on the streak amplitude) represents the most dangerous disturbance. Varicose waves are more stable, and are characterized by a critical amplitude of about 37%. Stability calculations of streamwise streaks employing the shape assumption, carried out in a parallel investigation, are compared to the results obtained here using the nonlinearly modified mean fields; the need to consider a base flow which includes mean flow modification and harmonics of the fundamental streak is clearly demonstrated.
Hairpin vortices in turbulent boundary layers
The present work addresses the question whether hairpin vortices are a dominant feature of near-wall turbulence and which role they play during transition. First, the parent-offspring mechanism is investigated in temporal simulations of a single hairpin vortex introduced in a mean shear flow corresponding to turbulent channels and boundary layers up to Reτ 590. Using an eddy viscosity computed from resolved simulations, the effect of a turbulent background is also considered. Tracking the vortical structure downstream, it is found that secondary hairpins are created shortly after initialization. Thereafter, all rotational structures decay, whereas this effect is enforced in the presence of an eddy viscosity. In a second approach, a laminar boundary layer is tripped to transition by insertion of a regular pattern of hairpins by means of defined volumetric forces representing an ejection event. The idea is to create a synthetic turbulent boundary layer dominated by hairpin-like vortices. The flow for Reτ < 250 is analysed with respect to the lifetime of individual hairpin-like vortices. Both the temporal and spatial simulations demonstrate that the regeneration process is rather short-lived and may not sustain once a turbulent background has formed. From the transitional flow simulations, it is conjectured that the forest of hairpins reported in former DNS studies is an outer layer phenomenon not being connected to the onset of near-wall turbulence.
On the convectively unstable nature of optimal streaks in boundary layers
The objective of the study is to determine the absolute/convective nature of the secondary instability experienced by finite-amplitude streaks in the flat-plate boundary layer. A family of parallel streaky base flows is defined by extracting velocity profiles from direct numerical simulations of nonlinearly saturated optimal streaks. The computed impulse response of the streaky base flows is then determined as a function of streak amplitude and streamwise station. Both the temporal and spatio-temporal instability properties are directly retrieved from the impulse response wave packet, without solving the dispersion relation or applying the pinching point criterion in the complex wavenumber plane. The instability of optimal streaks is found to be unambiguously convective for all streak amplitudes and streamwise stations. It is more convective than the Blasius boundary layer in the absence of streaks; the trailing edge-velocity of a Tollmien–Schlichting wave packet in the Blasius boundary layer is around 35% of the free-stream velocity, while that of the wave packet riding on the streaky base flow is around 70%. This is because the streak instability is primarily induced by the spanwise shear and the associated Reynolds stress production term is located further away from the wall, in a larger velocity region, than for the Tollmien–Schlichting instability. The streak impulse response consists of the sinuous mode of instability triggered by the spanwise wake-like profile, as confirmed by comparing the numerical results with the absolute/convective instability properties of the family of two-dimensional wakes introduced by Monkewitz (1988). The convective nature of the secondary streak instability implies that the type of bypass transition studied here involves streaks that behave as amplifiers of external noise.
On the motion of a cylindrical container in a circular pipe under the action of a liquid flow
From the viewpoint of the anisotropic near-wall turbulence model an analytical solution of the problem of axially symmetric motion of a cylindrical container of neutral buoyancy caused by an incompressible turbulent flow in a straight circular pipe has been obtained. This analytical solution agrees with experiments. It establishes the relations between the mean velocity in the pipe and the container velocity and between the velocity gradient in the pipe and the velocity gradient in the gap between the pipe wall and the side wall of the container.