Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
354 result(s) for "nerve gap"
Sort by:
Bioactive Silk Sericin/Bioceramic Nerve Guidance Conduit for Effective Repair of Long‐Gap Transected Peripheral Nerve Injury through Regulating Schwann Cells
Schwann cells are pivotal in generating a pro‐regenerative microenvironment for long‐gap peripheral nerve injury (PNI) repair via their orchestrated behaviors, including cell migration, proliferation, and secretion. Bioceramics can release bioactive ions to regulate “repair” cells for regenerating damaged tissues. Herein, bioceramic akermanite (AT) is screened and found to significantly enhance Schwann cell proliferation, migration, and secretion by activating the PI3K/AKT and MAPK/ERK signaling pathways. Integration with silk sericin (SS), a natural biomaterial possessing excellent bioactivity, promotes the release of Ca and Mg from AT, synergistically enhancing Schwann cell pro‐regenerative behaviors and accelerating axon elongation. The AT‐SS composite conduit effectively restores nerve structure and function in a 13 mm transected PNI. Compared with commercial eton conduit, AT‐SS conduit promotes axons and myelin sheaths regeneration, improves nerve conduction, and effectively alleviates gastrocnemius muscle atrophy. The AT‐SS conduit achieves autograft‐comparable behavioral recovery as evidenced by the paw withdrawal latency, hind limb grip force, and sciatic function index. The excellent degradation and biosafety of AT‐SS conduit indicate its potential for clinical translation. This study introduces an ion‐based therapeutic approach for enhancing the pro‐regenerative functions of Schwann cells, and provides novel insights and strategies for clinically managing long‐gap PNI and other nerve tissue injuries. This study identifies akermanite among six bioceramics and reveals its ability to enhance Schwann cell's proliferation, migration, and secretion. When combined with silk sericin, the composite conduit synergistically enhances Schwann cell‐mediated regenerative processes. In 13 mmlong‐gap sciatic nerve defect repair, it achieves comparable recovery to autografts while outperforming commercial alternative.
Bridging larger gaps in peripheral nerves using neural prosthetics and physical therapeutic agents
Peripheral nerve injuries are relatively common and can be caused by a variety of traumatic events such as motor vehicle accidents. They can lead to long-term disability, pain, and financial burden, and contribute to poor quality of life. In this review, we systematically analyze the contemporary literature on peripheral nerve gap management using nerve prostheses in conjunction with physical therapeutic agents. The use of nerve prostheses to assist nerve regeneration across large gaps (> 30 mm) has revolutionized neural surgery. The materials used for nerve prostheses have been greatly refined, making them suitable for repairing large nerve gaps. However, research on peripheral nerve gap management using nerve prostheses reports inconsistent functional outcomes, especially when prostheses are integrated with physical therapeutic agents, and thus warrants careful investigation. This review explores the effectiveness of nerve prostheses for bridging large nerve gaps and then addresses their use in combination with physical therapeutic agents.
Bioactive Nanofiber-Based Conduits in a Peripheral Nerve Gap Management—An Animal Model Study
The aim was to examine the efficiency of a scaffold made of poly (L-lactic acid)-co-poly(ϵ-caprolactone), collagen (COL), polyaniline (PANI), and enriched with adipose-derived stem cells (ASCs) as a nerve conduit in a rat model. P(LLA-CL)-COL-PANI scaffold was optimized and electrospun into a tubular-shaped structure. Adipose tissue from 10 Lewis rats was harvested for ASCs culture. A total of 28 inbred male Lewis rats underwent sciatic nerve transection and excision of a 10 mm nerve trunk fragment. In Group A, the nerve gap remained untouched; in Group B, an excised trunk was used as an autograft; in Group C, nerve stumps were secured with P(LLA-CL)-COL-PANI conduit; in Group D, P(LLA-CL)-COL-PANI conduit was enriched with ASCs. After 6 months of observation, rats were sacrificed. Gastrocnemius muscles and sciatic nerves were harvested for weight, histology analysis, and nerve fiber count analyses. Group A showed advanced atrophy of the muscle, and each intervention (B, C, D) prevented muscle mass decrease (p < 0.0001); however, ASCs addition decreased efficiency vs. autograft (p < 0.05). Nerve fiber count revealed a superior effect in the nerve fiber density observed in the groups with the use of conduit (D vs. B p < 0.0001, C vs. B p < 0.001). P(LLA-CL)-COL-PANI conduits with ASCs showed promising results in managing nerve gap by decreasing muscle atrophy.
Peripheral nerve regeneration by bioabsorbable nerve conduits filled with platelet-rich fibrin
To repair peripheral nerve defects and seek alternatives for autografts, nerve conduits with various growth factors and cells have been invented. Few pieces of literature report the effect of nerve conduits plus platelet-rich fibrin (PRF). This study aimed to investigate the effectiveness of nerve conduits filled with PRF. The model of a 10 mm sciatic nerve gap in a rat was used to evaluate peripheral nerve regeneration. The thirty rats were randomly divided into one of the following three groups (n = 10 per group). Autogenous nerve grafts (autograft group), conduits filled with phosphate-buffered saline (PBS) (PBS group), or conduits filled with PRF group (PRF group). We assessed motor and sensory functions for the three groups at 4, 8, and 12 weeks postoperatively. In addition, axon numbers were measured 12 weeks after repair of the peripheral nerve gaps. Significant differences in motor function were observed between the autograft group and the other two groups at 12 weeks postoperatively. In the test to evaluate the recovery of sensory function, there were significant differences between the PBS group and the other two groups at all time points. The most axon number was found in the autograft group. The axon number of the PRF group was significantly more extensive than that of the PBS group. The nerve conduit filled with PRF promoted the axon regeneration of the sciatic nerve and improved sensory function. •The model of a 10 mm sciatic nerve gap in a rat was used in this study.•We investigated the effectiveness of nerve conduits filled with PRF.•We assessed motor and sensory functions and axon numbers postoperatively.•The nerve conduit filled with platelet-rich Fibrin improved sensory function.•The nerve conduit filled with platelet-rich Fibrin promoted the axon regeneration.
Treatment options for digital nerve injury: a systematic review and meta-analysis
Background Surgical treatment of finger nerve injury is common for hand trauma. However, there are various surgical options with different functional outcomes. The aims of this study are to compare the outcomes of various finger nerve surgeries and to identify factors associated with the postsurgical outcomes via a systematic review and meta-analysis. Methods The literature related to digital nerve repairs were retrieved comprehensively by searching the online databases of PubMed from January 1, 1965, to August 31, 2021. Data extraction, assessment of bias risk and the quality evaluation were then performed. Meta-analysis was performed using the postoperative static 2-point discrimination (S2PD) value, moving 2-point discrimination (M2PD) value, and Semmes–Weinstein monofilament testing (SWMF) good rate, modified Highet classification of nerve recovery good rate. Statistical analysis was performed using the R (V.3.6.3) software. The random effects model was used for the analysis. A systematic review was also performed on the other influencing factors especially the type of injury and postoperative complications of digital nerve repair. Results Sixty-six studies with 2446 cases were included in this study. The polyglycolic acid conduit group has the best S2PD value (6.71 mm), while the neurorrhaphy group has the best M2PD value (4.91 mm). End-to-side coaptation has the highest modified Highet’s scoring (98%), and autologous nerve graft has the highest SWMF (91%). Age, the size of the gap, and the type of injury were factors that may affect recovery. The type of injury has an impact on the postoperative outcome of neurorrhaphy. Complications reported in the studies were mainly neuroma, cold sensitivity, paresthesia, postoperative infection, and pain. Conclusion Our study demonstrated that the results of surgical treatment of digital nerve injury are generally satisfactory; however, no nerve repair method has absolute advantages. When choosing a surgical approach to repair finger nerve injury, we must comprehensively consider various factors, especially the gap size of the nerve defect, and postoperative complications. Type of study/level of evidence Therapeutic IV.
Restoration of Neurological Function Following Peripheral Nerve Trauma
Following peripheral nerve trauma that damages a length of the nerve, recovery of function is generally limited. This is because no material tested for bridging nerve gaps promotes good axon regeneration across the gap under conditions associated with common nerve traumas. While many materials have been tested, sensory nerve grafts remain the clinical “gold standard” technique. This is despite the significant limitations in the conditions under which they restore function. Thus, they induce reliable and good recovery only for patients < 25 years old, when gaps are <2 cm in length, and when repairs are performed <2–3 months post trauma. Repairs performed when these values are larger result in a precipitous decrease in neurological recovery. Further, when patients have more than one parameter larger than these values, there is normally no functional recovery. Clinically, there has been little progress in developing new techniques that increase the level of functional recovery following peripheral nerve injury. This paper examines the efficacies and limitations of sensory nerve grafts and various other techniques used to induce functional neurological recovery, and how these might be improved to induce more extensive functional recovery. It also discusses preliminary data from the clinical application of a novel technique that restores neurological function across long nerve gaps, when repairs are performed at long times post-trauma, and in older patients, even under all three of these conditions. Thus, it appears that function can be restored under conditions where sensory nerve grafts are not effective.
Closing the Gap: Bridging Peripheral Sensory Nerve Defects with a Chitosan-Based Conduit a Randomized Prospective Clinical Trial
Introduction: If tensionless nerve coaptation is not possible, bridging the resulting peripheral nerve defect with an autologous nerve graft is still the current gold standard. The concept of conduits as an alternative with different materials and architectures, such as autologous vein conduits or bioartificial nerve conduits, could not replace the nerve graft until today. Chitosan, as a relatively new biomaterial, has recently demonstrated exceptional biocompatibility and material stability with neural lineage cells. The purpose of this prospective randomized clinical experiment was to determine the efficacy of chitosan-based nerve conduits in regenerating sensory nerves in the hand. Materials and methods: Forty-seven patients with peripheral nerve defects up to 26 mm distal to the carpal tunnel were randomized to receive either a chitosan conduit or an autologous nerve graft with the latter serving as the control group. Fifteen patients from the conduit group and seven patients from the control group were available for a 12-month follow-up examination. The primary outcome parameter was tactile gnosis measured with two-point discrimination. The secondary outcome parameters were Semmens Weinstein Monofilament Testing, self-assessed pain, and patient satisfaction. Results: Significant improvement (in static two-point discrimination) was observed six months after trauma (10.7 ± 1.2 mm; p < 0.05) for chitosan-based nerve conduits, but no further improvement was observed after 12 months of regeneration (10.9 ± 1.3 mm). After six months and twelve months, the autologous nerve graft demonstrated comparable results to the nerve conduit, with a static two-point discrimination of 11.0 ± 2.0 mm and 7.9 ± 1.1 mm. Semmes Weinstein Filament Testing in the nerve conduit group showed a continuous improvement over the regeneration period by reaching from 3.1 ± 0.3 after three months up to 3.7 ± 0.4 after twelve months. Autologous nerve grafts presented similar results: 3.3 ± 0.4 after three months and 3.7 ± 0.5 after twelve months. Patient satisfaction and self-reported pain levels were similar between the chitosan nerve conduit and nerve graft groups. One patient required revision surgery due to complications associated with the chitosan nerve tube. Conclusion: Chitosan-based nerve conduits are safe and suitable for bridging nerve lesions up to 26 mm in the hand. Tactile gnosis improved significantly during the early regeneration period, and functional outcomes were similar to those obtained with an autologous nerve graft. Thus, chitosan appears to be a sufficient substitute for autologous nerve grafts in the treatment of small nerve defects in the hand.
Adipose-Derived Neural Stem Cells Combined with Acellular Dermal Matrix as a Neural Conduit Enhances Peripheral Nerve Repair
Reconstruction to close a peripheral nerve gap continues to be a challenge for clinical medicine, and much effort is being made to develop nerve conduits facilitate nerve gap closure. Acellular dermal matrix (ADM) is mainly used to aid wound healing, but its malleability and plasticity potentially enable it to be used in the treatment of nerve gaps. Adipose-derived stem cells (ADSCs) can be differentiated into three germ layer cells, including neurospheres. We tested the ability of ADSC-derived neural stem cells (NSCs) in combination with ADM or acellular sciatic nerve (ASN) to repair a transected sciatic nerve. We found that NSCs form neurospheres that express Nestin and Sox2, and could be co-cultured with ADM in vitro, where they express the survival marker Ki67. Following sciatic nerve transection in rats, treatment with ADM+NSC or ASN+NSC led to increases in relative gastrocnemius weight, cross-sectional muscle fiber area, and sciatic functional index as compared with untreated rats or rats treated with ADM or ASN alone. These findings suggest that ADM combined with NSCs can improve peripheral nerve gap repair after nerve transection and may also be useful for treating other types of neurological gaps.
Ligustrazine monomer against cerebral ischemia/ reperfusion injury
Ligustrazine (2,3,5,6-tetramethylpyrazine) is a major active ingredient of the Szechwan lovage rhizome and is extensively used in treatment of ischemic cerebrovascular disease. The mecha- nism of action of ligustrazine use against ischemic cerebrovascular diseases remains unclear at present. This study summarizes its protective effect, the optimum time window of administra- tion, and the most effective mode of administration for clinical treatment of cerebral ischemia/ reperfusion injury. We examine the effects of ligustrazine on suppressing excitatory amino acid release, promoting migration, differentiation and proliferation of endogenous neural stem cells. We also looked at its effects on angiogenesis and how it inhibits thrombosis, the inflammatory response, and apoptosis after cerebral ischemia. We consider that ligustrazine gives noticeable protection from cerebral ischemia/reperfusion injury. The time window of ligustrazine admin- istration is limited. The protective effect and time window of a series of derivative monomers of ligustrazine such as 2-[(1,1-dimethylethyl)oxidoimino]methyl]-3,5,6-trimethylpyrazine, CXC137 and CXC 195 after cerebral ischemia were better than ligustrazine.
Therapeutic strategies for nerve injuries: current findings and future perspectives. Are textile technologies a potential solution?
Peripheral nerve lesions represent debilitating conditions that determine sensitive, motor and associated psychosocial losses, deeply and severely affecting the quality of life. Despite adequate microsurgical repair, functional results are variable and often dissatisfying. This study aimed to analyse and discuss peripheral nerve lesion cases from our clinic, involving the upper limb, an anatomical segment with impactful functional importance. We followed the distribution of nerve lesions throughout a three-year period, describing the patients’ characteristics and the therapeutic protocols. Furthermore, we reviewed the relevant literature to identify potential therapeutic strategies that may help optimize functional results. In the presented clinical study, most of the patients benefited from direct microsurgical repair of the nerve injury. However, we had a series of cases of nerve defects that could not be approached with primary repair. When a nerve cannot be repaired by direct neurorrhaphy, there are different options for bridging the nerve gap, each with its indications and advantages. Autografts still represent the gold standard in treating nerve gaps, but other procedures, such as vascularized nerve grafting, nerve conduits, allografts and nerve transfers, can be successfully used in some cases. The current focus in the field is the development of nerve conduits. Textile technologies represent a promising field in creating nerve conduits, given the ease of the manufacturing process, the affordable production cost and good mechanical properties.