Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
641 result(s) for "neurite outgrowth"
Sort by:
Genetic Analysis of Neurite Outgrowth Inhibitor‐Associated Genes in Parkinson's Disease: A Cross‐Sectional Cohort Study
Background Parkinson's disease (PD) is a neurodegenerative disease caused by a combination of aging, environmental, and genetic factors. Previous research has implicated both causative and susceptibility genes in PD development. Nogo‐A, a neurite outgrowth inhibitor, has been shown to impact axon growth through ligand‐receptor interactions negatively, thereby involved in the deterioration of dopaminergic neurons. However, rare genetic studies have identified the relationship between neurite outgrowth inhibitor (Nogo)‐associated genes and PD from a signaling pathway perspective. Methods We enrolled 3959 PD patients and 2931 healthy controls, categorized into two cohorts based on their family history and age at onset: sporadic early Parkinson's disease & familial Parkinson's disease (sEOPD & FPD) cohort and sporadic late Parkinson's disease (sLOPD) cohort. We selected 17 Nogo‐associated genes and stratified them into three groups via their function, respectively, ligand, receptors, and signaling pathway groups. Additionally, we conducted the burden analysis in rare variants, the logistic regression analysis in common variants, and the genotype–phenotype association analysis. Last, bioinformatics analysis and functional experiments were conducted to identify the role of the MTOR gene in PD. Results Our findings demonstrated that the missense variants in the MTOR gene might increase PD risk, while the deleterious variants in the receptor subtype of Nogo‐associated genes might mitigate PD risk. However, common variants of Nogo‐associated genes showed no association with PD development in two cohorts. Furthermore, genotype–phenotype association analysis suggested that PD patients with MTOR gene variants exhibited relatively milder motor symptoms but were more susceptible developing dyskinesia. Additionally, bioinformatics analysis results showed MTOR gene was significantly decreased in PD, indicating a potential negative role of the mTOR in PD pathogenesis. Experimental data further demonstrated that MHY1485, a mTOR agonist, could rescue MPP+‐induced axon inhibition, further implicating the involvement of mTOR protein in PD by regulating cell growth and axon growth. Conclusions Our preliminary investigation highlights the association of Nogo‐associated genes with PD onset in the Chinese mainland population and hints at the potential role of the MTOR gene in PD. Further research is warranted to elucidate the mechanistic pathways underlying these associations and their therapeutic implications. Here, we enrolled 3959 PD patients and 2931 healthy controls, categorized into two cohorts: the sporadic early Parkinson's disease & familial Parkinson's disease (sEOPD & FPD) cohort and the sporadic late Parkinson's disease (sLOPD) cohort, to identify the role of 17 Neurite Outgrowth Inhibitor‐associated genes. In specific, we conducted the burden analysis in rare variants, the Logistic regression analysis in common variants, and the genotype–phenotype association analysis. Last, Bioinformatics analysis and functional experiments were conducted to identify the role of the MTOR gene in PD. Our preliminary investigation highlights the association of Nogo‐associated genes with PD onset in the Chinese mainland population and elucidates the role of mTOR protein in PD via mediating axon growth.
Effect of Progranulin on Proliferation and Differentiation of Neural Stem/Progenitor Cells after Oxygen/Glucose Deprivation
We previously demonstrated that sivelestat, a selective neutrophil elastase inhibitor, attenuates the cleavage of progranulin (PGRN) and ischemia-induced cell injury in the brain. To obtain further insight into the role of PGRN, in the present study we evaluated the direct effects of sivelestat and recombinant PGRN (rPGRN) on the proliferation and differentiation of neural stem cells in cultures of neural stem/progenitor cells (NS/PC) under the ischemic condition in vitro. We demonstrated that oxygen/glucose deprivation (OGD)-induced cell proliferation of NS/PC was increased by rPGRN treatment. In addition, this increase was accompanied by increased phosphorylation of Akt and GSK-3β (Ser9) after OGD. But none of these responses occurred by treatment with sivelestat. Therefore, activation of the Akt/GSK-3β pathway could well be involved in this proliferative effect of rPGRN. Although OGD and reoxygenation-induced changes in the differentiation of NS/PC into neurons or astrocytes was not affected by treatment with rPGRN or sivelestat, it is noteworthy that rPGRN enhanced neurite outgrowth of β3-tubulin-positive neurons that had differentiated from the NS/PC. These findings suggest that enhancement of proliferation of endogenous NS/PC and neurite outgrowth of differentiated neurons from NS/PC by PGRN could be useful for a new therapeutic approach for cerebral ischemia.
Role of miR-124 in the regulation of retinoic acid-induced Neuro-2A cell differentiation
Retinoic acid can cause many types of cells, including mouse neuroblastoma Neuro-2A cells, to differentiate into neurons. However, it is still unknown whether microRNAs (miRNAs) play a role in this neuronal differentiation. To address this issue, real-time polymerase chain reaction assays were used to detect the expression of several differentiation-related miRNAs during the differentiation of retinoic acid-treated Neuro-2A cells. The results revealed that miR-124 and miR-9 were upregulated, while miR-125b was downregulated in retinoic acid-treated Neuro-2A cells. To identify the miRNA that may play a key role, miR-124 expression was regulated by transfection of miRNA mimics or inhibitors. Morphological analysis results showed that inhibition of miR-124 expression reversed the effects of retinoic acid on neurite outgrowth. Moreover, miR-124 overexpression alone caused Neuro-2A cells to differentiate into neurons, and its inhibitor could block this effect. These results suggest that miR-124 plays an important role in retinoic acid-induced differentiation of Neuro-2A cells.
Administration of Oxygen Ultra-Fine Bubbles Improves Nerve Dysfunction in a Rat Sciatic Nerve Crush Injury Model
Ultra-fine bubbles (<200 nm in diameter) have several unique properties and have been tested in various medical fields. The purpose of this study was to investigate the effects of oxygen ultra-fine bubbles (OUBs) on a sciatic nerve crush injury (SNC) model rats. Rats were intraperitoneally injected with 1.5 mL saline, OUBs diluted in saline, or nitrogen ultra-fine bubbles (NUBs) diluted in saline three times per week for 4 weeks in four groups: (1) control, (sham operation + saline); (2) SNC, (crush + saline); (3) SNC+OUB, (crush + OUB-saline); (4) SNC+NUB, (crush + NUB-saline). The effects of the OUBs on dorsal root ganglion (DRG) neurons and Schwann cells (SCs) were examined by serial dilution of OUB medium in vitro. Sciatic functional index, paw withdrawal thresholds, nerve conduction velocity, and myelinated axons were significantly decreased in the SNC group compared to the control group; these parameters were significantly improved in the SNC+OUB group, although NUB treatment did not affect these parameters. In vitro, OUBs significantly promoted neurite outgrowth in DRG neurons by activating AKT signaling and SC proliferation by activating ERK1/2 and JNK/c-JUN signaling. OUBs may improve nerve dysfunction in SNC rats by promoting neurite outgrowth in DRG neurons and SC proliferation.
RACK1 regulates neural development
Receptor for activated C kinase 1(RACK1)is an evolutionarily conserved scaffolding protein within the tryptophan-aspartate(WD)repeat family of proteins.RACK1 can bind multiple signaling molecules concurrently,as well as stabilize and anchor proteins.RACK1 also plays an important role at focal adhesions,where it acts to regulate cell migration.In addition,RACK1 is a ribosomal binding protein and thus,regulates translation.Despite these numerous functions,little is known about how RACK1 regulates nervous system development.Here,we review three studies that examine the role of RACK1 in neural development.In brief,these papers demonstrate that(1)RACK-1,the C.elegans homolog of mammalian RACK1,is required for axon guidance;(2)RACK1 is required for neurite extension of neuronally differentiated rat PC12cells;and(3)RACK1 is required for axon outgrowth of primary mouse cortical neurons.Thus,it is evident that RACK1 is critical for appropriate neural development in a wide range of species,and future discoveries could reveal whether RACK1 and its signaling partners are potential targets for treatment of neurodevelopmental disorders or a therapeutic approach for axonal regeneration.
ROCK inhibition enhances neurite outgrowth in neural stem cells by upregulating YAP expression in vitro
Spontaneous axonal regeneration of neurons does not occur after spinal cord injury because of inhibition by myelin and other inhibitory factors. Studies have demonstrated that blocking the Rho/Rho-kinase (ROCK) pathway can promote neurite outgrowth in spinal cord injury models. In the present study, we investigated neurite outgrowth and neuronal differentiation in neural stem cells from the mouse subventricular zone after inhibition of ROCK in vitro. Inhibition of ROCK with Y-27632 increased neurite length, enhanced neuronal differentiation, and upregulated the expression of two major signaling pathway effectors, phospho-Akt and phospho-mitogen-activated protein kinase, and the Hippo pathway effector YAP. These results suggest that inhibition of ROCK mediates neurite outgrowth in neural stem cells by activating the Hippo signaling pathway.
GIT1 enhances neurite outgrowth by stimulating microtubule assembly
GIT1,a G-protein-coupled receptor kinase interacting protein,has been reported to be involved in neurite outgrowth.However,the neurobiological functions of the protein remain unclear.In this study,we found that GIT1 was highly expressed in the nervous system,and its expression was maintained throughout all stages of neuritogenesis in the brain.In primary cultured mouse hippocampal neurons from GIT1 knockout mice,there was a significant reduction in total neurite length per neuron,as well as in the average length of axon-like structures,which could not be prevented by nerve growth factor treatment.Overexpression of GIT1 significantly promoted axon growth and fully rescued the axon outgrowth defect in the primary hippocampal neuron cultures from GIT1 knockout mice.The GIT1 N terminal region,including the ADP ribosylation factor-GTPase activating protein domain,the ankyrin domains and the Spa2 homology domain,were sufficient to enhance axonal extension.Importantly,GIT1 bound to many tubulin proteins and microtubule-associated proteins,and it accelerated microtubule assembly in vitro.Collectively,our findings suggest that GIT1 promotes neurite outgrowth,at least partially by stimulating microtubule assembly.This study provides new insight into the cellular and molecular pathogenesis of GIT1-associated neurological diseases.
S100B actions on glial and neuronal cells in the developing brain: an overview
The S100B is a member of the S100 family of “E” helix–loop- “F” helix structure (EF) hand calcium-binding proteins expressed in diverse glial, selected neuronal, and various peripheral cells, exerting differential effects. In particular, this review compiles descriptions of the detection of S100B in different brain cells localized in specific regions during the development of humans, mice, and rats. Then, it summarizes S100B’s actions on the differentiation, growth, and maturation of glial and neuronal cells in humans and rodents. Particular emphasis is placed on S100B regulation of the differentiation and maturation of astrocytes, oligodendrocytes (OL), and the stimulation of dendritic development in serotoninergic and cerebellar neurons during embryogenesis. We also summarized reports that associate morphological alterations (impaired neurite outgrowth, neuronal migration, altered radial glial cell morphology) of specific neural cell groups during neurodevelopment and functional disturbances (slower rate of weight gain, impaired spatial learning) with changes in the expression of S100B caused by different conditions and stimuli as exposure to stress, ethanol, cocaine and congenital conditions such as Down’s Syndrome. Taken together, this evidence highlights the impact of the expression and early actions of S100B in astrocytes, OL, and neurons during brain development, which is reflected in the alterations in differentiation, growth, and maturation of these cells. This allows the integration of a spatiotemporal panorama of S100B actions in glial and neuronal cells in the developing brain.
Extracellular matrix (ECM)-derived bioinks designed to foster vasculogenesis and neurite outgrowth: Characterization and bioprinting
The field of bioprinting has shown a tremendous development in recent years, focusing on the development of advanced in vitro models and on regeneration approaches. In this scope, the lack of suitable biomaterials that can be efficiently formulated as printable bioinks, while supporting specific cellular events, is currently considered as one of the main limitations in the field. Indeed, extracellular matrix (ECM)-derived biomaterials formulated to enable printability and support cellular response, for instance via integrin binding, are eagerly awaited in the field of bioprinting. Several bioactive laminin sequences, including peptides such as YIGSR and IKVAV, have been identified to promote endothelial cell attachment and/or neurite outgrowth and guidance, respectively. Here, we show the development of two distinct bioinks, designed to foster vasculogenesis or neurogenesis, based on methacrylated collagen and hyaluronic acid (CollMA and HAMA, respectively), both relevant ECM-derived polymers, and on their combination with cysteine-flanked laminin-derived peptides. Using this strategy, it was possible to optimize the bioink printability, by tuning CollMA and HAMA concentration and ratio, and modulate their bioactivity, through adjustments in the cell-active peptide sequence spatial density, without compromising cell viability. We demonstrated that cell-specific bioinks could be customized for the bioprinting of both human umbilical vein cord endothelial cells (HUVECs) or adult rat sensory neurons from the dorsal root ganglia, and could stimulate both vasculogenesis and neurite outgrowth, respectively. This approach holds great potential as it can be tailored to other cellular models, due to its inherent capacity to accommodate different peptide compositions and to generate complex peptide mixtures and/or gradients.
Inhibition of neurite outgrowth and enhanced effects compared to baseline toxicity in SH-SY5Y cells
Early life exposure to environmental chemicals can cause developmental neurotoxicity (DNT). The impairment of key neurodevelopmental processes such as neurite outgrowth inhibition can be used as endpoints for screening of DNT effects. We quantified neurite-specific effects using the ratio of effect concentrations for cytotoxicity and neurite outgrowth inhibition (SR cytotoxicity ). Baseline cytotoxicity, the minimal toxicity of any chemical, was used to quantify enhanced cytotoxicity (toxic ratio, TR) and neuronal-specific toxicity (SR baseline ) by comparing baseline cytotoxicity with the effects on cell viability and neurite outgrowth, respectively. The effects on cell viability and neurite length were measured based on image analysis in human neuroblastoma SH-SY5Y cells. Baseline cytotoxicity was predicted from hydrophobicity descriptors using a previously published model for SH-SY5Y cells. Enhanced cytotoxicity and neuronal-specific toxicity were more often observed for hydrophilic chemicals, which indicates that they are more likely to act through specific modes of action (MOA) on cell viability and neurite outgrowth. Hydrophobic chemicals showed a tendency to act through baseline toxicity without showing specific or enhanced toxicity, but were highly potent considering their low effect concentrations for both cytotoxicity and neurite outgrowth inhibition. The endpoint-specific controls (narciclasine, colchicine, cycloheximide, and rotenone), two carbamates (3-hydroxycarbofuran and carbaryl), and two redox cyclers (diquat and paraquat) showed distinct neurite-specific effects (SR cytotoxicity  > 4). By comparing neurite-specific effects with enhanced cytotoxicity, one can explain whether the observed effects involve specific inhibition of neurite outgrowth, other specific MOAs, or merely baseline toxicity arising from hydrophobicity.