Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
1 result(s) for "neurodegenerative biomarkers (pTau, S100B, NSE, GFAP)"
Sort by:
Investigation of the Acute Effects of Two Different Preoxygenation Methods on Neurodegenerative Biomarkers in Laparoscopic Cholecystectomy Surgery
Background and Objectives: Oxygen is essential for all living organisms and plays a critical role in anesthesia and intensive care practices. However, the notion that unlimited oxygen therapy is harmless is a misconception. Our study investigates the acute effects of different preoxygenation methods on hemodynamic parameters and neurodegenerative biomarkers in patients undergoing laparoscopic cholecystectomy surgery. Materials and Methods: This prospective, randomized, controlled study included 52 patients undergoing elective laparoscopic cholecystectomy under general anesthesia. Patients were divided into two groups: Group I received standard preoxygenation (100% FiO2 for 3 min), while Group II underwent rapid preoxygenation (eight deep breaths over 30 s to 1 min). Hemodynamic parameters (SAP, DAP, MAP, and SpO2) and neurodegenerative biomarkers (pTau, S100B, NSE, NfL, GFAP) were measured after preoxygenation, after intubation, and at the end of surgery. Results: Group I exhibited a significant increase in levels of pTau, S100B, NSE, and GFAP, indicating higher neuronal and glial cell stress compared to Group II (p < 0.001). No significant increase in NfL levels was observed in either group. Hemodynamic parameters (HR, SAP, DAP, MAP) were significantly higher during and after preoxygenation in Group I, suggesting an increased stress response. Group II showed lower levels of acute neurotoxicity and oxidative stress. Conclusions: Our findings indicate that preoxygenation with 100% FiO2 induces stress in neuronal cells, axons, and glial cells, leading to an increase in neurodegenerative biomarkers. Optimizing preoxygenation strategies is crucial to reduce oxidative stress and improve neurological outcomes for surgical patients.