Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
212 result(s) for "neutron diffraction data"
Sort by:
A multi-methodological study of kernite, a mineral commodity of boron
Kernite, ideally Na (OH) ∙3H O, is a major constituent of borate deposits and one of the most important mineral commodities of B. The chemical composition and crystal structure of kernite from the Kramer Deposit (Kern County, California) were investigated by a suite of analytical techniques (i.e., titrimetric determination of B content, gravimetric method for Na, ion selective electrode for F, high- mass loss for H O content, inductively coupled plasma atomic emission spectroscopy for REE and other minor elements, elemental analysis for C, N, and H contents) and single-crystal X‑ray (at 293 K) and neutron (at 20 K) diffraction. The concentrations of more than 50 elements were measured. The general experimental formula of the kernite sample used in this study is Na (OH) ∙3.01H O. The fraction of other elements is, overall, insignificant: excluding B, kernite from the Kramer Deposit does not act as geochemical trap of other technologically relevant elements (e.g., Li, Be, or REE). The X‑ray and neutron structure model obtained in this study confirms that the structure of kernite is built up by: two (crystallographically independent) triangular BO OH groups and two tetrahedral BO groups, which share corner-bridging O atoms to form threefold rings, giving chains running along [010], and NaO (OH)(OH ) and NaO (OH)(OH polyhedra. Positional disorder of two H sites of H O molecules was observed by the neutron structure refinement and corroborated by the maximum-entropy method calculation, which consistently provided a model based on a static disorder, rather than a dynamic one. The H-bonding network in the structure of kernite is complex, pervasive, and plays a primary role on its structural stability: the majority of the oxygen sites are involved in H-bonding, as or as . The potential utilizations of kernite, as a source of B (B ~50 wt%), are discussed, on the basis of the experimental findings of this study.
Structure and thermal expansion of end-member olivines I; crystal and magnetic structure, thermal expansion, and spontaneous magnetostriction of synthetic fayalite, Fe2SiO4, determined by high-resolution neutron powder diffraction
The lattice parameters and the crystal and magnetic structures of Fe2SiO4 have been determined from 10 K to 1453 K by high-resolution time-of-flight neutron powder diffraction. Fe2SiO4 undergoes two antiferromagnetic phase transformations on cooling from room temperature: the first, at 65.4 K, is to a collinear antiferromagnet with moments on two symmetry-independent Fe ions; the second transition, at ∼23 K, is to a structure in which the moments on one of the sets of Fe ions (those on the 'M1 site') become canted. The magnetic unit cell is identical to the crystallographic (chemical) unit cell and the space group remains Pbnm throughout. The magnetic structures have been refined and the results found to be in good agreement with previous studies; however, we have determined the spontaneous magnetostrictive strains, which have not been reported previously. In the paramagnetic phase of Fe2SiO4, at temperatures of 70 K and above, we find that the temperature dependence of the linear thermal expansion coefficient of the b axis takes an unusual form. In contrast to the behaviour of the expansion coefficients of the unit-cell volume and of the a and c axes, which show the expected reduction in magnitude below ∼300 K, that of the b axis remains almost constant between ∼70 K and 1000 K.
Gold nugget formation from earthquake-induced piezoelectricity in quartz
Gold nuggets occur predominantly in quartz veins, and the current paradigm posits that gold precipitates from dilute (<1 mg kg −1 gold), hot, water ± carbon dioxide-rich fluids owing to changes in temperature, pressure and/or fluid chemistry. However, the widespread occurrence of large gold nuggets is at odds with the dilute nature of these fluids and the chemical inertness of quartz. Quartz is the only abundant piezoelectric mineral on Earth, and the cyclical nature of earthquake activity that drives orogenic gold deposit formation means that quartz crystals in veins will experience thousands of episodes of deviatoric stress. Here we use quartz deformation experiments and piezoelectric modelling to investigate whether piezoelectric discharge from quartz can explain the ubiquitous gold–quartz association and the formation of gold nuggets. We find that stress on quartz crystals can generate enough voltage to electrochemically deposit aqueous gold from solution as well as accumulate gold nanoparticles. Nucleation of gold via piezo-driven reactions is rate-limiting because quartz is an insulator; however, since gold is a conductor, our results show that existing gold grains are the focus of ongoing growth. We suggest this mechanism can help explain the creation of large nuggets and the commonly observed highly interconnected gold networks within quartz vein fractures. Quartz emits a piezoelectric charge during deformation that may promote the formation of gold nuggets within veins in orogenic settings that experience earthquakes, according to a study using quartz deformation experiments and piezoelectric modelling.
A multi-methodological study of kurnakovite; a potential B-rich aggregate
The crystal structure and crystal chemistry of kurnakovite from Kramer Deposit (Kern County, California), ideally MgB3O3(OH)5·5H2O, were investigated by single-crystal neutron diffraction (data collected at 293 and 20 K) and by a series of analytical techniques aimed to determine its chemical composition. The concentration of more than 50 elements was measured. The empirical formula of the sample used in this study is Mg0.99(Si0.01B3.00)Σ3.01O3.00(OH)5·4.98H2O. The fraction of rare earth elements (REE) and other minor elements are, overall, insignificant. Even the content of fluorine, as a potential OH-group substituent, is insignificant (i.e., ~0.008 wt%). The neutron structure model obtained in this study, based on intensity data collected at 293 and 20 K, shows that the structure of kurnakovite contains: [BO2(OH)]-groups in planar-triangular coordination (with the B-ions in sp2 electronic configuration), [BO2(OH)2]-groups in tetrahedral coordination (with the B-ions in sp3 electronic configuration), and Mg(OH)2(H2O)4-octahedra, connected into (neutral) Mg(H2O)4B3O3(OH)5 units forming infinite chains running along [001]. Chains are mutually connected to give the tri-dimensional structure only via hydrogen bonding, and extra-chains \"zeolitic\" H2O molecules are also involved as \"bridging molecules.\" All the oxygen sites in the structure of kurnakovite are involved in hydrogen bonding, as donors or as acceptors. The principal implications of these results are: (1) kurnakovite does not act as a geochemical trap of industrially relevant elements (e.g., Li, Be, or REE), (2) the almost ideal composition makes kurnakovite a potentially good B-rich aggregate in concretes (for example, used for the production of radiation-shielding materials for the elevated ability of 10B to absorb thermal neutrons), which avoids the risk to release undesirable elements, for example sodium, that could promote deleterious reactions for the durability of cements.
Crystal chemistry and temperature behavior of the natural hydrous borate colemanite, a mineral commodity of boron
Colemanite, CaB 3 O 4 (OH) 3 ⋅H 2 O, is the most common hydrous Ca-borate, as well as a major mineral commodity of boron. In this study, we report a thorough chemical analysis and the low-temperature behavior of a natural sample of colemanite by means of a multi-methodological approach. From the chemical point of view, the investigated sample resulted to be relatively pure, its composition being very close to the ideal one, with only a minor substitution of Sr 2+ for Ca 2+ . At about 270.5 K, a displacive phase transition from the centrosymmetric P 2 1 / a  to the acentric P 2 1 space group occurs. On the basis of in situ single-crystal synchrotron X-ray (down to 104 K) and neutron diffraction (at 20 K) data, the hydrogen-bonding configuration of both the polymorphs and the structural modifications at the atomic scale at varying temperatures are described. The asymmetric distribution of ionic charges along the [010] axis, allowed by the loss of the inversion center, is likely responsible for the reported ferroelectric behavior of colemanite below the phase transition temperature.
Changes in physical properties of 4C pyrrhotite (Fe7S8) across the 32 K Besnus transition
Pyrrhotite, Fe7S8, is a common sulfide mineral in the Earth's crust and mantle, as well as in a range of meteorites and is of interest to a wide variety of disciplines including economic geology, geophysics, and material science. The 4C variety of pyrrhotite shows a dramatic change in magnetic properties at T ≈ 30 K, known as the Besnus transition. Although this transition is frequently used to detect pyrrhotite in geologic samples, the underlying mechanism driving the transition has not yet been identified. This study presents a high-resolution view of the changes in heat capacity, magnetic, and electronic properties of a natural single crystal of nearly pure, monoclinic 4C pyrrhotite across the Besnus transition. Contrary to previous studies, all of these properties show clear evidence of the Besnus transition, specific heat, in particular, revealing a clear transition at 32 K, apparently of second-order nature. Small-angle neutron scattering data are also presented, demonstrating an unusual change in short-range magnetic scattering at the transition. Furthermore, a magnetic field dependence of the transition temperature can be seen in both induced magnetization and electrical resistivity. These new observations help narrow the possible nature of the phase transition, clearly showing that interactions between intergrown coexisting 4C and 5C* superstructures, as suggested in some literature, are not necessary for the Besnus transition. In fact, the changes seen here in both the specific heat and the electronic transport properties are considerably larger than those seen in samples with intergrown superstructures. To further constrain the mechanism underlying the Besnus transition, we identify five separate potential models and evaluate them within the context of existing observations, thereby proposing experimental approaches that may help resolve ongoing ambiguities.
Minerals in cement chemistry; a single-crystal neutron diffraction study of ettringite, Ca6All2(SO4)3(OH)12·27H2O
Ettringite, reported with ideal formula Ca6Al2(SO4)3(OH)12·26H2O, is recognized as a secondary-alteration mineral and as an important crystalline constituent of Portland cements, playing different roles at different time scales. It contains more than 40 wt% of H2O. The crystal structure and crystal chemistry of ettringite were investigated by electron microprobe analysis in wavelength-dispersive mode, infrared spectroscopy, and single-crystal neutron diffraction at 20 K. The anisotropic neutron structure refinement allowed the location of (22+2) independent H sites, the description of their anisotropic vibrational regime and the complex hydrogen-bonding schemes. Analysis of the difference-Fourier maps of the nuclear density showed a disordered distribution of the inter-column ('free') H2O molecules of the ettringite structure, modeled (in the structure refinement) with two independent and mutually exclusive configurations. As the disorder is still preserved down to 20 K, we are inclined to consider that as a 'static disorder'. The structure of ettringite is largely held together by hydrogen bonding: the building units [i.e., SO4 tetrahedra, Al(OH)6 octahedra, and Ca(OH)4(H2O)4 polyhedra] are interconnected through an extensive network of hydrogen bonds. The ettringite of this study has ideal composition Ca6Al2(SO4)3(OH)12·27H2O, with (Mn+Fe+Si+Ti+Na+Ba)<0.04 atoms per formula unit. The effect of the low-temperature stability of ettringite and thaumasite on the pronounced 'Sulfate Attack' of Portland cements, observed in cold regions, is discussed.
On the labyrinthine world of arsenites: a single-crystal neutron and X-ray diffraction study of cafarsite
The crystal chemistry of a cafarsite sample from the fengitic orthogneisses of the Mt. Leone-Arbola nappe (Lower Penninic), forming the central body of Mount Cervandone and cropping out both in Switzerland and Italy (Alpe Devero area, Verbano–Cusio–Ossola province), was investigated by electron microprobe analysis in wavelength-dispersive mode (EPMA-WDS), single-crystal Raman spectroscopy, and single-crystal X-ray and neutron diffraction at 293 K. The sample of cafarsite of this study was found experimentally to be anhydrous and the chemical formula obtained on the basis of the EPMA-WDS data and structural refinements is the following: Ca1,Ca2 (Ca 15.56 Na 0.44 ) Σ16 Fe1 (Na 0.53 Fe 2+ 0.17 REE 0.30 ) Σ1.00 Mn1,Ti,Fe2 (Ti 7.46 Fe 3+ 4.47 Fe 2+ 3.20 Mn 2+ 0.85 Al 0.11 ) Σ16.11 As1,As2,As3 (AsO 3 ) 28 F F, with the general chemical formula Ca 16 (Na,Fe 2+ ,REE)(Ti, Fe 3+ ,Fe 2+ ,Mn 2+ ,Al) 16 (AsO 3 ) 28 F [or Ca 16 (Na,Fe 2+ ,REE)(Ti,Fe 3+ ,Al) 12 (Fe 2+ ,Mn) 4 (AsO 3 ) 28 F]. Our experimental findings show that fluorine, which was unconsidered in the previous studies, is a key element. The anhydrous nature of this sample is also confirmed by its Raman spectrum, which does not show any evidence of active bands ascribable to the O–H stretching region. The X-ray and neutron structure refinements provide a structure model that is partially in agreement with the previous experimental findings. The space group (i.e. Pn 3) and the unit-cell constant [i.e. 15.9507(4) Å] are conform to the literature data, but the structure of cafarsite, here refined, contains the following building units: three independent AsO 3 groups (trigonal pyramids), one CaO 6 F polyhedron, one CaO 8 polyhedron, two independent (Ti,Fe)O 6 octahedra, one (Na,Fe,REE)O 8 polyhedron, and one (Mn,Fe)O 6 octahedron. Connections among polyhedra are mainly due to edge- or vertex-sharing; the AsO 3 groups are not connected to each other.
Preferred Orientation of Quartz in Metamorphic Rocks from the Bergell Alps
Crystal preferred orientation of 47 samples of quartzite and eight samples of associated marbles from the Bergell Alps have been analyzed with time-of-flight neutron diffraction and EBSD. The results show a clear distinction of texture types for quartzites transformed from Triassic sandstones and quartz layers in gneiss. Textures of Triassic quartzites are overall weak and display a maximum of c-axes perpendicular to the foliation or a crossed girdle perpendicular to the lineation. Pole figures for positive rhombs 10 1 ¯ 1 show a maximum perpendicular to the foliation and negative rhombs 01 1 ¯ 1 generally display a minimum. Based on polycrystal plasticity models this texture type can be attributed to a combination of basal and rhombohedral slip. Asymmetry of the distributions is attributed to simple shear and local strain heterogeneities. The relatively weak texture is partially caused by muscovite limiting dislocation motion and grain growth, as well as adjacent layers of marble that accommodate significant strain. Most quartz layers in gneiss, including mylonites, display a texture with a-axes parallel to the lineation and a c-axis maximum in the intermediate fabric direction. This texture type can be attributed to dominant prismatic slip. Many samples are recrystallized and recrystallization appears to strengthen the deformation texture. The study shows good agreement of neutron diffraction and EBSD. Neutron diffraction data average over larger volumes and maximum pole densities are generally lower and more representative for the bulk material. With EBSD the microstructure and mechanical twinning can be quantified.
On the crystal structure and compressional behavior of talc: a mineral of interest in petrology and material science
The crystal structure of a natural triclinic talc (1 Tc polytype) [with composition: (Mg 2.93 Fe 0.06 ) Σ2.99 (Al 0.02 Si 3.97 ) Σ3.99 O 10 (OH) 2.10 ] has been investigated by single-crystal X-ray diffraction at 223 and 170 K and by single-crystal neutron diffraction at 20 K. Both the anisotropic X-ray refinements (i.e. at 223 and 170 K) show that the two independent tetrahedra are only slightly distorted. For the two independent Mg-octahedra, the bond distances between cation-hydroxyl groups are significantly shorter than the others. The ditrigonal rotation angle of the six-membered ring of tetrahedra is modest ( α  ~ 4°). The neutron structure refinement shows that the hydrogen-bonding scheme in talc consists of one donor site and three acceptors (i.e. trifurcated configuration), all the bonds having O···O ≤ 3.38 Å, H···O ~ 2.8 Å, and O–H···O ~ 111–116°. The three acceptors belong to the six-membered ring of tetrahedra juxtaposed to the octahedral sheet. The vibrational regime of the proton site appears being only slightly anisotropic. The elastic behavior of talc was investigated by means of in situ synchrotron single-crystal diffraction up to 16 GPa (at room temperature) using a diamond anvil cell. No evidence of phase transition has been observed within the pressure range investigated. P – V data fit, with an isothermal third-order Birch-Murnaghan equation of state, results as follows: V 0  = 454.7(10) Å 3 , K T0  = 56(3) GPa, and K ′ = 5.4(7). The “Eulerian finite strain” versus “normalized stress” plot yields: Fe (0) = 56(2) GPa and K ′ = 5.3(5). The compressional behavior of talc is strongly anisotropic, as reflected by the axial compressibilities (i.e. β ( a ): β ( b ): β ( c ) = 1.03:1:3.15) as well as by the magnitude and orientation of the unit-strain ellipsoid (with ε 1 : ε 2 : ε 3  = 1:1.37:3.21). A comparison between the elastic parameters of talc obtained in this study with those previously reported is carried out.