Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Language
      Language
      Clear All
      Language
  • Subject
      Subject
      Clear All
      Subject
  • Item Type
      Item Type
      Clear All
      Item Type
  • Discipline
      Discipline
      Clear All
      Discipline
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
3,265 result(s) for "nitrate leaching"
Sort by:
N₂O and CH₄ Emissions, and NO₃ ⁻ Leaching on a Crop-Yield Basis from a Subtropical Rain-fed Wheat–Maize Rotation in Response to Different Types of Nitrogen Fertilizer
Guaranteeing high crop yields while reducing environmental impacts of nitrogen fertilizer use due to associated losses of N₂O emissions and nitrate (NO₃ ⁻) leaching is a key challenge in the context of sustainable intensification of crop production. However, few field data sets are available that explore the effect of different forms of N management on yields as well as on N losses in the form of N₂O or NO₃ ⁻. Here we report on a large-scale field lysimeter (8 × 4 m²) experiment, which was designed to determine soil CH₄ and N₂O emissions, NO₃ ⁻ leaching losses and crop yields from a subtropical rain-fed wheat–maize rotation in the Sichuan Basin, one of the most intensively used agricultural regions in China. One control and three different fertilizer treatments with the same total rate of N application (280 kg N ha⁻¹ y⁻¹) were included: NF: control (no fertilizer); NPK: synthetic N fertilizer; OMNPK: synthetic N fertilizer plus pig manure; RSDNPK: synthetic N fertilizer plus crop residues. As compared to the standard NPK treatment, annual NO₃ ⁻ leaching losses for OMNPK and RSDNPK treatments were decreased by 36 and 22%, respectively (P < 0.05). Similarly, crop yield-scaled NO₃ ⁻ leaching for NPK treatment was higher than those for either OMNPK or RSDNPK treatments (P < 0.05). Direct N₂O emissions for RSDNPK treatment were decreased as compared with NPK and OMNPK treatments (P < 0.05). Furthermore, the yield-scaled GWP (global warming potential) was lower for the treatments where either pig manure or crop residues were incorporated as compared to the standard NPK treatment (P < 0.05). Our study indicates that it is possible to reduce the negative environmental impact of NO₃ ⁻ leaching and N₂O emissions without compromising crop productivity. Yield-scaled NO₃ ⁻ leaching, similar to the yield-scaled GWP, represents another valuable-integrated metric to address the dual goals of reducing nitrogen pollution and maintaining crop grain yield for a given agricultural system.
Global Sensitivity Analysis of Key Parameters in the APSIMX-Sugarcane Model to Evaluate Nitrate Balance via Treed Gaussian Process
Difficulties in direct monitoring of nitrate balance in agricultural fields reveal the importance of modeling and quantifying the affecting parameters on nitrate balance. We constructed meta-models for APSIMX-Sugarcane using the treed gaussian process and conducted a global sensitivity analysis for nitrate uptake and leaching under three conditions: (1) bare land (BL) to examine the influence of soil hydraulic characteristics, (2) N-free treatment under radiation use efficiency (RUE) ranges (i) 1.2–1.8 [N-free(a)] and (ii) 1.8–2.5 [N-free(b)], and (3) urea conditions to examine the influence of plant growth. Generated meta-models showed good accuracy (for all conditions: R2 > 0.70; NRMSE < 16%; AI > 0.90). The most influential parameters (sensitivity indices ≥ 0.02) were as follows: for leached NO3−N in BL: the parameter rerated to saturated flow-proportion of water between saturation and field capacity (SWCON) of all soil layers; for NO3− uptake and leached NO3−N in N-free(a) and urea: RUE of the phenological stage (PS) 3 (RUE3) and 4, tt_emerg_to_begcane, green_leaf_no, and y_n_conc_crit_leaf of PS 4 (NCL4); in N-free(b): RUE3, NCL4, and SWCON of soil layers 0–15 cm; 15–30 cm, which confirmed that influential parameters were depended on N-stress. The outcomes of this study are useful for enhancing the accuracy and efficiency of crop modeling.
Reducing environmental risk by improving N management in intensive Chinese agricultural systems Erratum: 2009 May 12, v. 106, no. 19, p. 8077.
Excessive N fertilization in intensive agricultural areas of China has resulted in serious environmental problems because of atmospheric, soil, and water enrichment with reactive N of agricultural origin. This study examines grain yields and N loss pathways using a synthetic approach in 2 of the most intensive double-cropping systems in China: waterlogged rice/upland wheat in the Taihu region of east China versus irrigated wheat/rainfed maize on the North China Plain. When compared with knowledge-based optimum N fertilization with 30-60% N savings, we found that current agricultural N practices with 550-600 kg of N per hectare fertilizer annually do not significantly increase crop yields but do lead to about 2 times larger N losses to the environment. The higher N loss rates and lower N retention rates indicate little utilization of residual N by the succeeding crop in rice/wheat systems in comparison with wheat/maize systems. Periodic waterlogging of upland systems caused large N losses by denitrification in the Taihu region. Calcareous soils and concentrated summer rainfall resulted in ammonia volatilization (19% for wheat and 24% for maize) and nitrate leaching being the main N loss pathways in wheat/maize systems. More than 2-fold increases in atmospheric deposition and irrigation water N reflect heavy air and water pollution and these have become important N sources to agricultural ecosystems. A better N balance can be achieved without sacrificing crop yields but significantly reducing environmental risk by adopting optimum N fertilization techniques, controlling the primary N loss pathways, and improving the performance of the agricultural Extension Service.
Nitrogen Losses and Potential Mitigation Strategies for a Sustainable Agroecosystem
Nitrogen (N) in the agricultural production system influences many aspects of agroecosystems and several critical ecosystem services widely depend on the N availability in the soil. Cumulative changes in regional ecosystem services may lead to global environmental changes. Thus, the soil N status in agriculture is of critical importance to strategize its most efficient use. Nitrogen is also one of the most susceptible macronutrients to environmental loss, such as ammonia volatilization (NH3), nitrous oxide (N2O) emissions, nitrate leaching (NO3), etc. Any form of N losses from agricultural systems can be major limitations for crop production, soil sustainability, and environmental safeguard. There is a need to focus on mitigation strategies to minimize global N pollution and implement agricultural management practices that encourage regenerative and sustainable agriculture. In this review, we identified the avenues of N loss into the environment caused by current agronomic practices and discussed the potential practices that can be adapted to prevent this N loss in production agriculture. This review also explored the N status in agriculture during the COVID-19 pandemic and the existing knowledge gaps and questions that need to be addressed.
Long-term fate of nitrate fertilizer in agricultural soils
Increasing diffuse nitrate loading of surface waters and groundwater has emerged as a major problem in many agricultural areas of the world, resulting in contamination of drinking water resources in aquifers as well as eutrophication of freshwaters and coastal marine ecosystems. Although empirical correlations between application rates of N fertilizers to agricultural soils and nitrate contamination of adjacent hydrological systems have been demonstrated, the transit times of fertilizer N in the pedosphere-hydrosphere system are poorly understood. We investigated the fate of isotopically labeled nitrogen fertilizers in a three-decade-long in situ tracer experiment that quantified not only fertilizer N uptake by plants and retention in soils, but also determined to which extent and over which time periods fertilizer N stored in soil organic matter is rereleased for either uptake in crops or export into the hydrosphere.We found that 61-65% of the applied fertilizers N were taken up by plants,whereas 12-15% of the labeled fertilizer Nwere still residing in the soil organic matter more than a quarter century after tracer application. Between 8-12% of the applied fertilizer had leaked toward the hydrosphere during the 30-y observation period. We predict that additional exports of 15N-labeled nitrate from the tracer application in 1982 toward the hydrosphere will continue for at least another five decades. Therefore, attempts to reduce agricultural nitrate contamination of aquatic systems must consider the long-term legacy of past applications of synthetic fertilizers in agricultural systems and the nitrogen retention capacity of agricultural soils.
Slow-release nitrogen fertilizers enhance growth, yield, NUE in wheat crop and reduce nitrogen losses under an arid environment
Higher demands of food led to higher nitrogen application to promote cropping intensification and produce more which may have negative effects on the environment and lead to pollution. While sustainable wheat production is under threat due to low soil fertility and organic matter due to nutrient degradation at high temperatures in the region. The current research explores the effects of different types of coated urea fertilizers and their rates on wheat crop under arid climatic conditions of Pakistan. Enhancing nitrogen use efficiency by using eco-friendly coated urea products could benefit growers and reduce environmental negative effects. A trial treatment included N rates (130, 117, 104, and 94 kg ha -1 ) and coated urea sources (neem coated, sulfur coated, bioactive sulfur coated) applied with equal quantity following split application method at sowing, 20 and 60 days after sowing (DAS). The research was arranged in a split-plot design with randomized complete block design had three replicates. Data revealed that bioactive sulfur coated urea with the application of 130 kg N ha -1 increased chlorophyll contents 55.0 (unit value), net leaf photosynthetic rate (12.51 μmol CO 2 m -2 s -1 ), and leaf area index (5.67) significantly. Furthermore, research elucidates that bioactive sulfur urea with the same N increased partial factor productivity (43.85 Kg grain Kg -1 N supplied), nitrogen harvest index (NHI) 64.70%, and partial nutrient balance (1.41 Kg grain N content Kg -1 N supplied). The neem-coated and sulfur-coated fertilizers also showed better results than monotypic urea. The wheat growth and phenology significantly improved by using coated fertilizers. The crop reached maturity earlier with the application of bioactive sulfur-coated urea than others. Maximum total dry matter 14402 (kg ha -1 ) recorded with 130 kg N ha -1 application. Higher 1000-grain weight (33.66 g), more number of grains per spike (53.67), grain yield (4457 kg ha -1 ), and harvest index (34.29%) were obtained with optimum N application 130 kg ha -1 (recommended). There is a significant correlation observed for growth, yield, and physiological parameters with N in the soil while nitrogen-related indices are also positively correlated. The major problem of groundwater contamination with nitrate leaching is also reduced by using coated fertilizers. Minimum nitrate concentration (7.37 and 8.77 kg ha -1 ) was observed with the application of bioactive sulfur-coated and sulfur-coated urea with lower N (94 kg ha -1 ), respectively. The bioactive sulfur-coated urea with the application of 130 kg N ha -1 showed maximum phosphorus 5.45 mg kg -1 and potassium 100.67 mg kg -1 in the soil. Maximum nitrogen uptake (88.20 kg ha -1 ) is showed by bioactive sulfur coated urea with 130 kg N ha -1 application. The total available NPK concentrations in soil showed a significant correlation with physiological attributes; grain yield; harvest index; and nitrogen use efficiency components, i.e., partial factor productivity, partial nutrient balance, and nitrogen harvest index. This research reveals that coating urea with secondary nutrients, neem oil, and microbes are highly effective techniques for enhancing fertilizer use efficiency and wheat production in calcareous soils and reduced N losses under arid environments.
Examination of the Effectiveness of Controlled Release Fertilizer to Balance Sugarcane Yield and Reduce Nitrate Leaching to Groundwater
Groundwater pollution by nitrate leaching from sugarcane fields in Okinawa is recognized as a critical issue. Controlled release fertilizer (CRF) has the potential to reduce N leaching from cropping systems. The study focused on confirming the effectiveness of CRF at balancing sugarcane yield and reducing nitrate leaching from sugarcane fields via a water footprint (WF) approach. A lysimeter study was conducted using four treatments: (i) bare land, (ii) P and K fertilization without N, (iii) urea fertilization, and (iv) CRF application. According to the results, for both plant cane and ratoon, the total sugarcane dry weight obtained for CRF was higher compared to urea application. The cumulative nitrate-N leaching of the plant cane season for all treatments was higher than of the ratoon season. For the total crop cycle (plant cane plus ratoon), heavier nitrate-N leaching was observed in the urea-applied condition than in the CRF-applied condition. For both crop seasons, the total sugarcane WF of the CRF application (plant cane: 192.33 m3/t, ratoon: 190.47 m3/t) was lower than that of the urea application (plant cane: 233.47 m3/t, ratoon: 237.59 m3/t). WF values indicated that the CRF application had a lower impact on the groundwater of the area.
Rotating maize reduces the risk and rate of nitrate leaching
There is a strong link between nitrate (NO 3 -N) leaching from fertilized annual crops and the rate of nitrogen (N) fertilizer input. However, this leaching-fertilizer relationship is poorly understood and the degree to which soil type, weather, and cropping system influence it is largely unknown. We calibrated the Agricultural Production Systems sIMulator process-based cropping system model using 56 site-years of data sourced from eight field studies across six states in the U.S. Midwest that monitored NO 3 -N leaching from artificial subsurface drainage in two cropping systems: continuous maize and two-year rotation of maize followed by unfertilized soybean (maize-soybean rotation). We then ran a factorial simulation experiment and fit statistical models to the leaching-fertilizer response. A bi-linear model provided the best fit to the relationship between N fertilizer rate (kg ha −1 ) and NO 3 -N leaching load (kg ha −1 ) (from one year of continuous maize or summed over the two-year maize-soybean rotation). We found that the cropping system dictated the slopes and breakpoint (the point at which the leaching rate changes) of the model, but the site and year determined the intercept i.e. the magnitude of the leaching. In both cropping systems, the rate of NO 3 -N leaching increased at an N fertilizer rate higher than the N rate needed to optimize the leaching load per kg grain produced. Above the model breakpoint, the rate of NO 3 -N leaching per kg N fertilizer input was 300% greater than the rate below the breakpoint in the two-year maize-soybean rotation and 650% greater in continuous maize. Moreover, the model breakpoint occurred at only 16% above the average agronomic optimum N rate (AONR) in continuous maize, but 66% above the AONR in the maize-soybean rotation. Rotating maize with soybean, therefore, allows for a greater environmental buffer than continuous maize with regard to the impact of overfertilization on NO 3 -N leaching.
Effects of nitrogen deposition and empirical nitrogen critical loads for ecoregions of the United States
Human activity in the last century has led to a significant increase in nitrogen (N) emissions and atmospheric deposition. This N deposition has reached a level that has caused or is likely to cause alterations to the structure and function of many ecosystems across the United States. One approach for quantifying the deposition of pollution that would be harmful to ecosystems is the determination of critical loads. A critical load is defined as the input of a pollutant below which no detrimental ecological effects occur over the long-term according to present knowledge. The objectives of this project were to synthesize current research relating atmospheric N deposition to effects on terrestrial and freshwater ecosystems in the United States, and to estimate associated empirical N critical loads. The receptors considered included freshwater diatoms, mycorrhizal fungi, lichens, bryophytes, herbaceous plants, shrubs, and trees. Ecosystem impacts included: (1) biogeochemical responses and (2) individual species, population, and community responses. Biogeochemical responses included increased N mineralization and nitrification (and N availability for plant and microbial uptake), increased gaseous N losses (ammonia volatilization, nitric and nitrous oxide from nitrification and denitrification), and increased N leaching. Individual species, population, and community responses included increased tissue N, physiological and nutrient imbalances, increased growth, altered root  :  shoot ratios, increased susceptibility to secondary stresses, altered fire regime, shifts in competitive interactions and community composition, changes in species richness and other measures of biodiversity, and increases in invasive species. The range of critical loads for nutrient N reported for U.S. ecoregions, inland surface waters, and freshwater wetlands is 1-39 kg N·ha −1 ·yr −1 , spanning the range of N deposition observed over most of the country. The empirical critical loads for N tend to increase in the following sequence for different life forms: diatoms, lichens and bryophytes, mycorrhizal fungi, herbaceous plants and shrubs, and trees. The critical load approach is an ecosystem assessment tool with great potential to simplify complex scientific information and communicate effectively with the policy community and the public. This synthesis represents the first comprehensive assessment of empirical critical loads of N for major ecoregions across the United States.
The trade-off between soil water recovery and nitrate leaching following the orchard-to-cropland conversion in the Chinese Loess Plateau
A large-scale conversion of apple orchards into farmland has occurred in the tableland region of the Chinese Loess Plateau due to the aging of apple trees and the increase in pests and diseases. However, the impact of this conversion on soil desiccation recovery and soil nutrient transportation remains unclear, posing a new challenge for sustainable agricultural development in the region. The study employed the space-time substitution approach to select a long-standing orchard and croplands that has been growing maize for 1-, 3-, 5-, and 10-years post-orchard conversion as sampling sites, to investigate the effects of recovery durations of orchard-to-cropland conversion on deep soil water recharge and residual nitrate dynamics, as well as the key factors driving these changes. The results indicated that within 5 years, the conversion led to a rapid recharge of desiccated deep soil (6–9 m), followed by a stable and slow increase in subsequent years. The annual soil water recovery rate in the deep soil was as high as 5.90 mm m −1  a −1 . While, the increased water input also caused rapid leaching and accumulation of nitrate in the deep soil, with its peak depth increasing significantly from 3.4 m to 7.0 m over time (R 2  = 0.92). Soil water was identified as the key factor influencing nitrate leaching, with a correlation coefficient of 0.48 ( P  < 0.05). In conclusion, orchard-to-cropland conversion effectively replenished the deep soil water in the short term but also accelerated soil nitrate leaching. Therefore, while large-scale conversion of orchards to farmland is undertaken, it is crucial to acknowledge the trade-off relationship involving the recharge of deep soil water and the subsequent increase in deep nitrogen leaching. The findings of this study hold significant implication for the management of water and nutrient resources after the conversion of orchards to farmland, highlighting the necessity to mitigate nitrogen leaching while soil water is being restored.