Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
9,513 result(s) for "nitrogen (N)"
Sort by:
Competition between roots and microorganisms for nitrogen: mechanisms and ecological relevance
Demand of all living organisms on the same nutrients forms the basis for interspecific competition between plants and microorganisms in soils. This competition is especially strong in the rhizosphere. To evaluate competitive and mutualistic interactions between plants and microorganisms and to analyse ecological consequences of these interactions, we analysed 424 data pairs from 41 15N-labelling studies that investigated 15N redistribution between roots and microorganisms. Calculated Michaelis–Menten kinetics based on K m (Michaelis constant) and V max (maximum uptake capacity) values from 77 studies on the uptake of nitrate, ammonia, and amino acids by roots and microorganisms clearly showed that, shortly after nitrogen (N) mobilization from soil organic matter and litter, microorganisms take up most N. Lower K m values of microorganisms suggest that they are especially efficient at low N concentrations, but can also acquire more N at higher N concentrations (V max) compared with roots. Because of the unidirectional flow of nutrients from soil to roots, plants are the winners for N acquisition in the long run. Therefore, despite strong competition between roots and microorganisms for N, a temporal niche differentiation reflecting their generation times leads to mutualistic relationships in the rhizosphere. This temporal niche differentiation is highly relevant ecologically because it: protects ecosystems from N losses by leaching during periods of slow or no root uptake; continuously provides roots with available N according to plant demand; and contributes to the evolutionary development of mutualistic interactions between roots and microorganisms.
Biological nitrogen fixation and biomass accumulation within poplar clones as a result of inoculations with diazotrophic endophyte consortia
Sustainable production of biomass for bioenergy relies on low-input crop production. Inoculation of bioenergy crops with plant growth-promoting endophytes has the potential to reduce fertilizer inputs through the enhancement of biological nitrogen fixation (BNF). Endophytes isolated from native poplar growing in nutrient-poor conditions were selected for a series of glasshouse and field trials designed to test the overall hypothesis that naturally occurring diazotrophic endophytes impart growth promotion of the host plants. Endophyte inoculations contributed to increased biomass over uninoculated control plants. This growth promotion was more pronounced with multi-strain consortia than with single-strain inocula. Biological nitrogen fixation was estimated through 15N isotope dilution to be 65% nitrogen derived from air (Ndfa). Phenotypic plasticity in biomass allocation and branch production observed as a result of endophyte inoculations may be useful in bioenergy crop breeding and engineering programs.
Nitrogen Type and Availability Drive Mycorrhizal Effects on Wheat Performance, Nitrogen Uptake and Recovery, and Production Sustainability
Plant performance is strongly dependent on nitrogen (N), and thus increasing N nutrition is of great relevance for the productivity of agroecosystems. The effects of arbuscular mycorrhizal (AM) fungi on plant N acquisition are debated because contradictory results have been reported. Using N-labeled fertilizers as a tracer, we evaluated the effects of AM fungi on N uptake and recovery from mineral or organic sources in durum wheat. Under sufficient N availability, AM fungi had no effects on plant biomass but increased N concentrations in plant tissue, plant N uptake, and total N recovered from the fertilizer. In N-deficient soil, AM fungi led to decreased aboveground biomass, which suggests that plants and AM fungi may have competed for N. When the organic source had a low C:N ratio, AM fungi favored both plant N uptake and N recovery. In contrast, when the organic source had a high C:N ratio, a clear reduction in N recovery from the fertilizer was observed. Overall, the results indicate an active role of arbuscular mycorrhizae in favoring plant N-related traits when N is not a limiting factor and show that these fungi help in N recovery from the fertilizer. These results hold great potential for increasing the sustainability of durum wheat production.
Biological limits on nitrogen use for plant photosynthesis
The relationship between leaf photosynthesis and nitrogen is a critical production function for ecosystem functioning. Cultivated species have been studied in terms of this relationship, focusing on improving nitrogen (N) use, while wild species have been studied to evaluate leaf evolutionary patterns. A comprehensive comparison of cultivated vs wild species for this relevant function is currently lacking. We hypothesize that cultivated species show increased carbon assimilation per unit leaf N area compared with wild species as associated with artificial selection for resource-acquisition traits. We compiled published data on light-saturated photosynthesis (A max) and leaf nitrogen (LNarea) for cultivated and wild species. The relationship between A max and LNarea was evaluated using a frontier analysis (90th percentile) to benchmark the biological limit of nitrogen use for photosynthesis. Carbon assimilation in relation to leaf N was not consistently higher in cultivated species; out of 14 cultivated species, only wheat, rice, maize and sorghum showed higher ability to use N for photosynthesis compared with wild species. Results indicate that cultivated species have not surpassed the biological limit on nitrogen use observed for wild species. Future increases in photosynthesis based on natural variation need to be assisted by bioengineering of key enzymes to increase crop productivity.
Rubisco is a small fraction of total protein in marine phytoplankton
Ribulose 1,5 bisphosphate carboxylase oxygenase (Rubisco) concentrations were quantified as a proportion of total protein in eight species of microalgae. This enzyme has been assumed to be a major fraction of total protein in phytoplankton, as has been demonstrated in plants, potentially constituting a large sink for cellular nitrogen. Representative microalgae were grown in batch and continuous cultures under nutrient-replete, nitrogen (N)-limited, or phosphorus (P)-limited conditions with varying CO2. Quantitative Western blots were performed using commercially available global antibodies and protein standards. Field incubations with natural populations of organisms from the coast of California were conducted under both nutrient-replete and N-limited conditions with varying CO2. In all experiments, Rubisco represented < 6% of total protein. In nutrient-replete exponentially growing batch cultures, concentrations ranged from 2% to 6%, while in nutrient-limited laboratory and field cultures, concentrations were < 2.5%. Rubisco generally decreased with increasing CO2 and with decreasing growth rates. Based on a calculation of maximum Rubisco activity, these results suggest that phytoplankton contain the minimum concentration of enzyme necessary to support observed growth rates. Unlike in plants, Rubisco does not account for a major fraction of cellular N in phytoplankton.
Repeated prescribed fires decrease stocks and change attributes of coarse woody debris in a temperate eucalypt forest
Previous studies have found negligible effects of single prescribed fires on coarse woody debris (CWD), but the cumulative effects of repeated low-intensity prescribed fires are unknown. This represents a knowledge gap for environmental management because repeated prescribed fires are a key tool for mitigating wildfire risk, and because CWD is recognized as critical to forest biodiversity and functioning. We examined the effects of repeated low-intensity prescribed fires on the attributes and stocks of (fallen) CWD in a mixed-species eucalypt forest of temperate Australia. Prescribed fire treatments were a factorial combination of two seasons (Autumn, Spring) and two frequencies (three yearly High, 10 yearly Low), were replicated over five study areas, and involved two to seven low-intensity fires over 27 years. Charring due to prescribed fires variously changed carbon and nitrogen concentrations and C to N ratios of CWD pieces depending on decay class, but did not affect mean wood density. CWD biomass and C and N stocks were significantly less in Fire than Control treatments. Decreases in total CWD C stocks of ∼8 Mg/ha in Fire treatments were not balanced by minor increases in pyrogenic (char) C (∼0.3 Mg/ha). Effects of prescribed fire frequency and season included significantly less C and N stocks in rotten CWD in High than Low frequency treatments, and in the largest CWD pieces in Autumn than Spring treatments. Our study demonstrates that repeated low-intensity prescribed fires have the potential to significantly decrease CWD stocks, in pieces of all sizes and particularly decayed pieces, and to change CWD chemical attributes. CWD is at best a minor stock of pyrogenic C under such fire regimes. These findings suggest a potential trade-off in the management of temperate eucalypt forests between sustained reduction of wildfire risk, and the consequences of decreased CWD C stocks, and of changes in CWD as a habitat and biogeochemical substrate. Nonetheless, negative impacts on CWD of repeated low-intensity prescribed fires could be lessened by fire intervals of 10 rather than three years (to decrease losses of decayed CWD), and fires in moist rather than dry conditions (to conserve large CWD).
Dominant mycorrhizal association of trees alters carbon and nutrient cycling by selecting for microbial groups with distinct enzyme function
While it is well established that plants associating with arbuscular mycorrhizal (AM) and ectomycorrhizal (ECM) fungi cycle carbon (C) and nutrients in distinct ways, we have a limited understanding of whether varying abundance of ECM and AM plants in a stand can provide integrative proxies for key biogeochemical processes. We explored linkages between the relative abundance of AM and ECM trees and microbial functioning in three hardwood forests in southern Indiana, USA. Across each site’s ‘mycorrhizal gradient’, we measured fungal biomass, fungal: bacterial (F: B) ratios, extracellular enzyme activities, soil carbon: nitrogen ratio, and soil pH over a growing season. We show that the percentage of AM or ECM trees in a plot promotes microbial communities that both reflect and determine the C to nutrient balance in soil. Soils dominated by ECM trees had higher F: B ratios and more standing fungal biomass than AM stands. Enzyme stoichiometry in ECM soils shifted to higher investment in extracellular enzymes needed for nitrogen and phosphorus acquisition than in C-acquisition enzymes, relative to AM soils. Our results suggest that knowledge of mycorrhizal dominance at the stand or landscape scale may provide a unifying framework for linking plant and microbial community dynamics, and predicting their effects on ecological function.
Long‐term nitrogen deposition linked to reduced water use efficiency in forests with low phosphorus availability
The impact of long‐term nitrogen (N) deposition is under‐studied in phosphorus (P)‐limited subtropical forests. We exploited historically collected herbarium specimens to investigate potential physiological responses of trees in three subtropical forests representing an urban‐to‐rural gradient, across which N deposition has probably varied over the past six decades. We measured foliar [N] and [P] and stable carbon (δ¹³C), oxygen (δ¹⁸O) and nitrogen (δ¹⁵N) isotopic compositions in tissue from herbarium specimens of plant species collected from 1947 to 2014. Foliar [N] and N : P increased, and δ¹⁵N and [P] decreased in the two forests close to urban centers. Consistent with recent studies demonstrating that N deposition in the region is ¹⁵N‐depleted, these data suggest that the increased foliar [N] and N : P, and decreased [P], may be attributable to atmospheric deposition and associated enhancement of P limitation. Estimates of intrinsic water use efficiency calculated from foliar δ¹³C decreased by c. 30% from the 1950s to 2014, contrasting with multiple studies investigating similar parameters in N‐limited forests. This effect may reflect decreased photosynthesis, as suggested by a conceptual model of foliar δ¹³C and δ¹⁸O. Long‐term N deposition may exacerbate P limitation and mitigate projected increases in carbon stocks driven by elevated CO₂ in forests on P‐limited soils.
Mineral nutrition of campos rupestres plant species on contrasting nutrient‐impoverished soil types
In Brazil, the campos rupestres occur over the Brazilian shield, and are characterized by acidic nutrient‐impoverished soils, which are particularly low in phosphorus (P). Despite recognition of the campos rupestres as a global biodiversity hotspot, little is known about the diversity of P‐acquisition strategies and other aspects of plant mineral nutrition in this region. To explore nutrient‐acquisition strategies and assess aspects of plant P nutrition, we measured leaf P and nitrogen (N) concentrations, characterized root morphology and determined the percentage arbuscular mycorrhizal (AM) colonization of 50 dominant species in six communities, representing a gradient of soil P availability. Leaf manganese (Mn) concentration was measured as a proxy for carboxylate‐releasing strategies. Communities on the most P‐impoverished soils had the highest proportion of nonmycorrhizal (NM) species, the lowest percentage of mycorrhizal colonization, and the greatest diversity of root specializations. The large spectrum of leaf P concentration and variation in root morphologies show high functional diversity for nutritional strategies. Higher leaf Mn concentrations were observed in NM compared with AM species, indicating that carboxylate‐releasing P‐mobilizing strategies are likely to be present in NM species. The soils of the campos rupestres are similar to the most P‐impoverished soils in the world. The prevalence of NM strategies indicates a strong global functional convergence in plant mineral nutrition strategies among severely P‐impoverished ecosystems.
Soil nitrogen dynamics in switchgrass seeded to a marginal cropland in South Dakota
The potential ecological impacts of switchgrass (Panicum virgatum L.), as a biofuel feedstock, have been assessed under different environmental conditions. However, limited information is available in understanding the integrated analysis of nitrogen (N) dynamics including soil nitrate (NO3−), nitrous oxide (N2O) emissions, and NO3− leaching under switchgrass land management. The specific objective was to explore N dynamics for 2009 through 2015 in switchgrass seeded to a marginally yielding cropland based on treatments of N fertilization rate (N rate; low, 0; medium, 56; high, 112 kg N ha−1) and landscape position (shoulder, backslope, and footslope). Our findings indicated that N rate impacted soil NO3− (0–5 cm depth) and surface N2O fluxes but did not impact NO3− leaching during the observed years. Medium N (56 kg N ha−1) was the optimal rate for increasing biomass yield with reduced environmental problems. Landscape position impacted the N dynamics. At the footslope position, soil NO3−, soil NO3− leaching, and N2O fluxes were higher than the other landscape positions. Soil N2O fluxes and NO3− leaching had downward trends over the observed years. Growing switchgrass on marginally yielding croplands can store soil N, reduce N losses via leaching, and mitigate N2O emissions from soils to the atmosphere over the years. Switchgrass seeded on marginally yielding croplands can be beneficial in reducing N losses and can be grown as a sustainable bioenergy crop on these marginal lands.