Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
451 result(s) for "nitrous oxide (N2O)"
Sort by:
Snow cover manipulation in agricultural fields: as an option for mitigating greenhouse gas emissions
Short-term N₂O emission occurs in relation to snowmelt within seasonally frozen soil. To understand the effects of changing winter climates on the N₂O flux, snow cover manipulation experiments are useful. In Japan, snow cover manipulation is practiced by farmers to improve agricultural yield and is executed either by applying a broadcast of blackish agent onto the snow cover, which leads to faster snow-melting thereby extending the crop-growing season, or by snow cover removal/re-accumulation, leading to an enhanced soil frost depth for weed management. Implementation of these practices involves using an amount of fossil fuel, in addition to influencing soil-derived N₂O emissions, therefore, the load factors of snow cover management practices per unit area of agricultural field were estimated in this study. Field data including micrometeorological conditions, ground surface flux of N₂O, and amount of fossil fuel consumed during machinery operation for management practices, were obtained at two sites in Hokkaido over 2 years (2008–2010). Fuel consumption for the field spreading was found to be unexpectedly small (0.017 Mg CO₂ eq ha⁻¹). It was therefore suggested that acceleration of snowmelt may have the potential to reduce net greenhouse gas emissions if the agent used is a low-degradable C-rich material, such as charcoal. For soil frost control, the fossil fuel consumption during a set of snow cover removal/re-accumulation (estimated as 0.052 Mg CO₂ eq ha⁻¹) is discussed, together with the relationship between possible mechanisms causing stimulation of N₂O production in frozen soil and inherent large differences in N₂O flux among sites.
Arbuscular mycorrhizal fungi reduce nitrous oxide emissions from N2O hotspots
Nitrous oxide (N2O) is a potent, globally important, greenhouse gas, predominantly released from agricultural soils during nitrogen (N) cycling. Arbuscular mycorrhizal fungi (AMF) form a mutualistic symbiosis with two-thirds of land plants, providing phosphorus and/or N in exchange for carbon. As AMF acquire N, it was hypothesized that AMF hyphae may reduce N2O production. AMF hyphae were either allowed (AMF) or prevented (nonAMF) access to a compartment containing an organic matter and soil patch in two independent microcosm experiments. Compartment and patch N2O production was measured both before and after addition of ammonium and nitrate. In both experiments, N2O production decreased when AMF hyphae were present before inorganic N addition. In the presence of AMF hyphae, N2O production remained low following ammonium application, but increased in the nonAMF controls. By contrast, negligible N2O was produced following nitrate application to either AMF treatment. Thus, the main N2O source in this system appeared to be via nitrification, and the production of N2O was reduced in the presence of AMF hyphae. It is hypothesized that AMF hyphae may be outcompeting slow-growing nitrifiers for ammonium. This has significant global implications for our understanding of soil N cycling pathways and N2O production.
Mitigation of non-CO2 greenhouse gases from Indian agriculture sector
The Indian agriculture sector is driven by small and marginal farmers and employs two-thirds of the Indian work force. Agriculture also accounts for around a quarter of the total greenhouse gas emissions, mainly in the form of methane (CH4) and nitrous oxide (N2O). Hence, agriculture is an important sector for India’s transition to net-zero emissions and for the achievement of the sustainable development goals. So far, very few studies have assessed the future trajectories for CH4 and N2O emissions from the agriculture sector. Moreover, assessment of CH4 and N2O mitigation potential at a subnational (state) level is missing but is important owing to the regional diversity in India. To fill this gap, we focus on methane and nitrous oxide emissions from the agricultural activities using 23 sub-regions in India. We use the GAINS modelling framework which has been widely applied for assessing the mitigation strategies for non-CO2 emissions and multiple air pollutants at regional and global scales. We analyze a current policy and a sustainable agriculture scenario using different combinations of structural interventions and technological control measures to inform the Indian and global climate policy debates. Our results suggest that a combination of sustainable agricultural practices and maximum feasible control measures could reduce the CH4 and N2O emissions by about 6% and 19% by 2030 and 27% and 40% by 2050 when compared to the current policies scenario with limited technological interventions. At a sub-national level, highest mitigation potential is observed in Uttar Pradesh, followed by, Madhya Pradesh, Rajasthan, Gujarat, Maharashtra, Andhra Pradesh, and Telangana. The mitigation of agricultural CH4 and N2O also has co-benefits in terms of reduced local pollution, improved health, and livelihood opportunities for the local communities.
Modelling terrestrial nitrous oxide emissions and implications for climate feedback
Ecosystem nitrous oxide (N2O) emissions respond to changes in climate and CO2 concentration as well as anthropogenic nitrogen (N) enhancements. Here, we aimed to quantify the responses of natural ecosystem N2O emissions to multiple environmental drivers using a process-based global vegetation model (DyN-LPJ). We checked that modelled annual N2O emissions from nonagricultural ecosystems could reproduce field measurements worldwide, and experimentally observed responses to step changes in environmental factors. We then simulated global N2O emissions throughout the 20th century and analysed the effects of environmental changes. The model reproduced well the global pattern of N2O emissions and the observed responses of N cycle components to changes in environmental factors. Simulated 20th century global decadal-average soil emissions were c. 8.2–9.5 Tg N yr−1 (or 8.3–10.3 Tg N yr−1 with N deposition). Warming and N deposition contributed 0.85 ± 0.41 and 0.80 ± 0.14 Tg N yr−1, respectively, to an overall upward trend. Rising CO2 also contributed, in part, through a positive interaction with warming. The modelled temperature dependence of N2O emission (c. 1 Tg N yr−1 K−1) implies a positive climate feedback which, over the lifetime of N2O (114 yr), could become as important as the climate–carbon cycle feedback caused by soil CO2 release.
Nitrogen fertilization challenges the climate benefit of cellulosic biofuels
Cellulosic biofuels are intended to improve future energy and climate security. Nitrogen (N) fertilizer is commonly recommended to stimulate yields but can increase losses of the greenhouse gas nitrous oxide (N2O) and other forms of reactive N, including nitrate. We measured soil N2O emissions and nitrate leaching along a switchgrass (Panicum virgatum) high resolution N-fertilizer gradient for three years post-establishment. Results revealed an exponential increase in annual N2O emissions that each year became stronger (R2 > 0.9, P < 0.001) and deviated further from the fixed percentage assumed for IPCC Tier 1 emission factors. Concomitantly, switchgrass yields became less responsive each year to N fertilizer. Nitrate leaching (and calculated indirect N2O emissions) also increased exponentially in response to N inputs, but neither methane (CH4) uptake nor soil organic carbon changed detectably. Overall, N fertilizer inputs at rates greater than crop need curtailed the climate benefit of ethanol production almost two-fold, from a maximum mitigation capacity of −5.71 0.22 Mg CO2e ha−1 yr−1 in switchgrass fertilized at 56 kg N ha−1 to only −2.97 0.18 Mg CO2e ha−1 yr−1 in switchgrass fertilized at 196 kg N ha−1. Minimizing N fertilizer use will be an important strategy for fully realizing the climate benefits of cellulosic biofuel production.
Dependence of N2O/NO Decomposition and Formation on Temperature and Residence Time in Thermal Reactor
Nitrogen dioxide (N2O) is a greenhouse gas that is harmful to the ozone layer and contributes to global warming. Many other nitrogen oxide emissions are controlled using the selective non-catalytic reaction (SNCR) process, but N2O reduction methods are few. To avoid future air pollution problems, N2O reduction from industrial sources is essential. In this study, a N2O decomposition and NO formation under an argon atmospheric N2O gas mixture were observed in a lab-scale SNCR system. The reaction rate and mechanism of N2O were calculated using a reaction path analyzer (CHEMKIN-PRO). The residence time of the gas mixture and the temperature in the reactor were set as experimental variables. The results confirmed that most of the N2O was converted to N2 and NO. The change in the N2O reduction rate increased with the residence time at 1013 and 1113 K, but decreased at 1213 K due to the inverse reaction. NO concentration increased with the residence time at 1013 and 1113 K, but decreased at 1213 K owing to the conversion of NO back to N2O.
Full-scale comparison of N2O emissions from SBR N/DN operation versus one-stage deammonification MBBR treating reject water
To be able to fulfill the Paris agreement regarding anthropogenic greenhouse gases, all potential 12 emissions must be mitigated. Wastewater treatment plants should aim to eliminate emissions of the 13 most potent greenhouse gas, nitrous oxide. In this study, these emissions were measured at a full-scale 14 reject water treatment tank during two different operation modes: nitrification/denitrification (N/DN) 15 operating as a sequencing batch reactor (SBR), and deammonification (nitritation/anammox) as a moving 16 bed biofilm reactor (MBBR). Nitrous oxide was measured both in the water phase and in the off-gas. The 17 treatment process emitted significantly less nitrous oxide in deammonification mode 0.14-0.7 %, 18 compared to 10 % of Total Nitrogen in N/DN mode. The decrease can be linked to the change feeding 19 strategy, concentration in nitrite, load of ammonia oxidized, shorter aeration time, no ethanol dosage 20 and the introduction of biofilm. Further, evaluation was done how the operational pH set point 21 influenced the emissions in deammonification mode. Lower concentrations of nitrous oxide was 22 measured in water phase at higher pH (7.5-7.6) than at lower pH (6.6-7.1). This is believed to be mainly 23 because of the lower aeration ratio and increased complete denitrification at the higher pH set point.
Regional and strain-level prevalence of nitrogen-fixing Bradyrhizobium with potential N2O reduction in South Korea
Agricultural practices are the largest anthropogenic source of nitrous oxide (N 2 O), a potent greenhouse gas contributing to global climate change. Applying symbiotic microbial inoculants capable of complete denitrification offers a promising strategy to mitigate N 2 O emissions from agricultural fields. This study reports the strain-level diversity and geographical distribution of soybean symbiont bacteria Bradyrhizobium species carrying the nosZ gene, which encodes nitrous oxide reductase. Of 227 indigenous Bradyrhizobium isolates from soybean root nodules across South Korea, 162 were found to possess the nosZ gene, indicating their potential for N 2 O reduction. The majority of the most prevalent species, Bradyrhizobium diazoefficiens , harbor the nosZ gene, contributing to the overall high frequency of nosZ -positive genotypes nationwide. In contrast, no evidence of the nosZ gene was detected in the second most abundant species, Bradyrhizobium elkanii , which was predominantly isolated from the southwestern regions, raising the possibility of elevated N₂O emissions in these areas. The presence of the nosZ gene varies substantially even within the same species, highlighting the importance of understanding strain-level genetic and functional diversity to develop Bradyrhizobium inoculants optimized for both nitrogen fixation and denitrification.
Pond greenhouse gas emissions controlled by duckweed coverage
Freshwaters are significant contributors of greenhouse gases to the atmosphere, including carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O). Small waterbodies such as ponds are now recognized to have disproportionate greenhouse gas emissions relative to their size, but measured emissions from ponds have varied by several orders of magnitude. To assess drivers of variation in pond greenhouse gas dynamics, we measured concentrations and emissions of CO2, CH4, and N2O across 26 ponds in Minnesota, United States, during the ice-free season. The studied ponds differed in land-use, from urban stormwater ponds to natural forested ponds. The ponds were all sources of greenhouse gases, driven by large CH4 emissions (mean 704 [sd 840] mg CH4-C m−2 d−1). CO2 fluxes were variable, but on average a sink (mean −25.9 [sd 862] mg CO2-C m−2 d−1), and N2O emissions were generally low (mean 0.398 [sd 0.747] mg N2O-N m−2 d−1). Duckweed coverage on the water surfaces ranged from 0% to 100% coverage, and had the largest influence on water chemistry and greenhouse gas dynamics across the ponds. Duckweed covered ponds (ponds with greater than 85% coverage) had higher phosphorus levels and increased anoxia compared to ponds without duckweed (ponds with less than 12% coverage), leading to higher CH4 concentrations and overall greenhouse gas emissions in the duckweed ponds. Duckweed ponds had a mean emission rate in CO2 equivalents of 30.9 g C m−2 d−1 compared to 11.0 g C m−2 d−1 in non-duckweed ponds.