Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
4,853 result(s) for "nodulation"
Sort by:
The rhizobial type III effector ErnA confers the ability to form nodules in legumes
Several Bradyrhizobium species nodulate the leguminous plant Aeschynomene indica in a type III secretion system-dependent manner, independently of Nod factors. To date, the underlying molecular determinants involved in this symbiotic process remain unknown. To identify the rhizobial effectors involved in nodulation, we mutated 23 out of the 27 effector genes predicted in Bradyrhizobium strain ORS3257. The mutation of nopAO increased nodulation and nitrogenase activity, whereas mutation of 5 other effector genes led to various symbiotic defects. The nopM1 and nopP1 mutants induced a reduced number of nodules, some of which displayed large necrotic zones. The nopT and nopAB mutants induced uninfected nodules, and a mutant in a yet-undescribed effector gene lost the capacity for nodule formation. This effector gene, widely conserved among bradyrhizobia, was named ernA for \"effector required for nodulation-A.\" Remarkably, expressing ernA in a strain unable to nodulate A. indica conferred nodulation ability. Upon its delivery by Pseudomonas fluorescens into plant cells, ErnA was specifically targeted to the nucleus, and a fluorescence resonance energy transfer-fluorescence lifetime imaging microscopy approach supports the possibility that ErnA binds nucleic acids in the plant nuclei. Ectopic expression of ernA in A. indica roots activated organogenesis of root- and nodule-like structures. Collectively, this study unravels the symbiotic functions of rhizobial type III effectors playing distinct and complementary roles in suppression of host immune functions, infection, and nodule organogenesis, and suggests that ErnA triggers organ development in plants by a mechanism that remains to be elucidated.
The Regulation of Nodule Number in Legumes Is a Balance of Three Signal Transduction Pathways
Nitrogen is a major determinant of plant growth and productivity and the ability of legumes to form a symbiotic relationship with nitrogen-fixing rhizobia bacteria allows legumes to exploit nitrogen-poor niches in the biosphere. But hosting nitrogen-fixing bacteria comes with a metabolic cost, and the process requires regulation. The symbiosis is regulated through three signal transduction pathways: in response to available nitrogen, at the initiation of contact between the organisms, and during the development of the nodules that will host the rhizobia. Here we provide an overview of our knowledge of how the three signaling pathways operate in space and time, and what we know about the cross-talk between symbiotic signaling for nodule initiation and organogenesis, nitrate dependent signaling, and autoregulation of nodulation. Identification of common components and points of intersection suggest directions for research on the fine-tuning of the plant’s response to rhizobia.
Unraveling new molecular players involved in the autoregulation of nodulation in Medicago truncatula
The number of legume root nodules resulting from a symbiosis with rhizobia is tightly controlled by the plant. Certain members of the CLAVATA3/Embryo Surrounding Region (CLE) peptide family, specifically MtCLE12 and MtCLE13 in Medicago truncatula, act in the systemic autoregulation of nodulation (AON) pathway that negatively regulates the number of nodules. Little is known about the molecular pathways that operate downstream of the AON-related CLE peptides. Here, by means of a transcriptome analysis, we show that roots ectopically expressing MtCLE13 deregulate only a limited number of genes, including three down-regulated genes encoding lysin motif receptor-like kinases (LysM-RLKs), among which are the nodulation factor (NF) receptor NF Perception gene (NFP) and two up-regulated genes, MtTML1 and MtTML2, encoding Too Much Love (TML)-related Kelch-repeat containing F-box proteins. The observed deregulation was specific for the ectopic expression of nodulation-related MtCLE genes and depended on the Super Numeric Nodules (SUNN) AON RLK. Moreover, overexpression and silencing of these two MtTML genes demonstrated that they play a role in the negative regulation of nodule numbers. Hence, the identified MtTML genes are the functional counterpart of the Lotus japonicus TML gene shown to be central in the AON pathway. Additionally, we propose that the down-regulation of a subset of LysM-RLK-encoding genes, among which is NFP, might contribute to the restriction of further nodulation once the first nodules have been formed.
The NIN transcription factor coordinates CEP and CLE signaling peptides that regulate nodulation antagonistically
Legumes tightly regulate nodule number to balance the cost of supporting symbiotic rhizobia with the benefits of nitrogen fixation. C-terminally Encoded Peptides (CEPs) and CLAVATA3-like (CLE) peptides positively and negatively regulate nodulation, respectively, through independent systemic pathways, but how these regulations are coordinated remains unknown. Here, we show that rhizobia, Nod Factors, and cytokinins induce a symbiosis-specific CEP gene, MtCEP7, which positively regulates rhizobial infection. Via grafting and split root studies, we reveal that MtCEP7 increases nodule number systemically through the MtCRA2 receptor. MtCEP7 and MtCLE13 expression in rhizobia-inoculated roots rely on the MtCRE1 cytokinin receptor and on the MtNIN transcription factor. MtNIN binds and transactivates MtCEP7 and MtCLE13, and a NIN Binding Site (NBS) identified within the proximal MtCEP7 promoter is required for its symbiotic activation. Overall, these results demonstrate that a cytokinin-MtCRE1-MtNIN regulatory module coordinates the expression of two antagonistic, symbiosis-related, peptide hormones from different families to fine-tune nodule number.
Celebrating 20 Years of Genetic Discoveries in Legume Nodulation and Symbiotic Nitrogen Fixation
Since 1999, various forward- and reverse-genetic approaches have uncovered nearly 200 genes required for symbiotic nitrogen fixation (SNF) in legumes. These discoveries advanced our understanding of the evolution of SNF in plants and its relationship to other beneficial endosymbioses, signaling between plants and microbes, the control of microbial infection of plant cells, the control of plant cell division leading to nodule development, autoregulation of nodulation, intracellular accommodation of bacteria, nodule oxygen homeostasis, the control of bacteroid differentiation, metabolism and transport supporting symbiosis, and the control of nodule senescence. This review catalogs and contextualizes all of the plant genes currently known to be required for SNF in two model legume species, Medicago truncatula and Lotus japonicus, and two crop species, Glycine max (soybean) and Phaseolus vulgaris (common bean). We also briefly consider the future of SNF genetics in the era of pan-genomics and genome editing.
Can co-inoculation of Bradyrhizobium and Azospirillum alleviate adverse effects of drought stress on soybean (Glycine max L. Merrill.)?
Harnessing the beneficial potential of plant growth-promoting rhizobacteria may be an alternative strategy to improve plant tolerance to drought stress. The effect of inoculation with Bradyrhizobium japonicum and Azospirillum brasilense either alone or in combination on the plant growth and drought tolerance of soybean [Glycine max (L.) Merrill.] was investigated in this study in greenhouse conditions. Treatments were arranged in a randomized block design in a 3 × 4 factorial: three irrigation regimes [100% of pot capacity—PC (well-watered control), 50% of PC (moderate stress) and 25% of PC (severe stress)] and four inoculation treatments [control (non-inoculated), inoculation with B. japonicum, inoculation with A. brasilense, and co-inoculation with B. japonicum and A. brasilense]. Leaf relative water content, cell membrane stability, root nodulation, plant growth, and morphophysiological indexes were recorded. The inoculation of soybean plants with B. japonicum and A.brasilense either alone or in combination improved leaf membrane stability under drought stress conditions when compared to non-inoculated plants; however, this lower damage to cell membranes was not sufficient to maintain the leaf water content of the plant under drought stress. Plants co-inoculated with B. japonicum and A.brasilense improved the root nodulation under severe drought conditions. Inoculation of B. japonicum and A. brasilense either alone or in combination reduced the pod abortion rate under moderate drought stress, but had no effect under severe drought stress. In summary, the co-inoculation of A. brasilense and B. japonicum alleviate adverse effects limited by drought stress to the growth of soybeans.Author: Please check and confirm that the authors [Elijanara Raissa Silva, Carlos Eduardo Silva Oliveira, Alan Mario Zuffo, Eduardo Pradi Vendruscolo] and their initials have been correctly identified and amend if necessary.The authors were correctly identified.
The Phaseolus vulgaris Receptor-Like Kinase PvFER1 and the Small Peptides PvRALF1 and PvRALF6 Regulate Nodule Number as a Function of Nitrate Availability
Legumes associate with Gram-negative soil bacteria called rhizobia, resulting in the formation of a nitrogen-fixing organ, the nodule. Nodules are an important sink for photosynthates for legumes, so these plants have developed a systemic regulation mechanism that controls their optimal number of nodules, the so-called autoregulation of nodulation (AON) pathway, to balance energy costs with the benefits of nitrogen fixation. In addition, soil nitrate inhibits nodulation in a dose-dependent manner, through systemic and local mechanisms. The CLE family of peptides and their receptors are key to tightly controlling these inhibitory responses. In the present study, a functional analysis revealed that PvFER1, PvRALF1, and PvRALF6 act as positive regulators of the nodule number in growth medium containing 0 mM of nitrate but as negative regulators in medium with 2 and 5 mM of nitrate. Furthermore, the effect on nodule number was found to be consistent with changes in the expression levels of genes associated with the AON pathway and with the nitrate-mediated regulation of nodulation (NRN). Collectively, these data suggest that PvFER1, PvRALF1, and PvRALF6 regulate the optimal number of nodules as a function of nitrate availability.
Characterisation of Medicago truncatula CLE34 and CLE35 in nitrate and rhizobia regulation of nodulation
• Legumes form a symbiosis with atmospheric nitrogen (N₂)-fixing soil rhizobia, resulting in new root organs called nodules that enable N₂-fixation. Nodulation is a costly process that is tightly regulated by the host through autoregulation of nodulation (AON) and nitrate-dependent regulation of nodulation. Both pathways require legume-specific CLAVATA/ESR-related (CLE) peptides. • Nitrogen-induced nodulation-suppressing CLE peptides have not previously been investigated in Medicago truncatula, for which only rhizobia-induced MtCLE12 and MtCLE13 have been characterised. Here, we report on novel peptides MtCLE34 and MtCLE35 in nodulation control. • The nodulation-suppressing CLE peptides of five legume species were classified into three clades based on sequence homology and phylogeny. This approached identified MtCLE34 and MtCLE35 and four new CLE peptide orthologues of Pisum sativum. Whereas MtCLE12 and MtCLE13 are induced by rhizobia, MtCLE34 and MtCLE35 respond to both rhizobia and nitrate. MtCLE34 was identified as a pseudogene lacking a functional CLE-domain. MtCLE35 was found to inhibit nodulation in a SUNN- and RDN1-dependent manner via overexpression analysis. • Together, our findings indicate that MtCLE12 and MtCLE13 have a specific role in AON, while MtCLE35 regulates nodule numbers in response to both rhizobia and nitrate. MtCLE34 likely had a similar role to MtCLE35, but its function was lost due to a premature nonsense mutation.
MicroRNA167-Directed Regulation of the Auxin Response Factors GmARF8a and GmARF8b Is Required for Soybean Nodulation and Lateral Root Development
Legume root nodules convert atmospheric nitrogen gas into ammonium through symbiosis with a prokaryotic microsymbiont broadly called rhizobia. Auxin signaling is required for determinant nodule development; however, the molecular mechanism of auxin-mediated nodule formation remains largely unknown. Here, we show in soybean (Glycine max) that the microRNA miR167 acts as a positive regulator of lateral root organs, namely nodules and lateral roots. miR167c expression was up-regulated in the vasculature, pericycle, and cortex of soybean roots following inoculation with Bradyrhizobium japonicum strain USDA110 (the microsymbiont). It was found to positively regulate nodule numbers directly by repressing the target genes GmARF8a and GmARF8b (homologous genes of Arabidopsis [Arabidopsis thaliana] AtARF8 that encode auxin response factors). Moreover, the expression of miR167 and its targets was up- and down-regulated by auxin, respectively. The miR167-GmARF8 module also positively regulated nodulation efficiency under low microsymbiont density, a condition often associated with environmental stress. The regulatory role of miR167 on nodule initiation was dependent on the Nod factor receptor GmNFR1α, and it acts upstream of the nodulation-associated genes nodule inception, nodulation signaling pathway1, early nodulin40-1, NF-YA1 (previously known as HAEM activator protein2-1), and NF-YA2. miR167 also promoted lateral root numbers. Collectively, our findings establish a key role for the miR167-GmARF8 module in auxin-mediated nodule and lateral root formation in soybean.
Root-derived CLE glycopeptides control nodulation by direct binding to HAR1 receptor kinase
Leguminous plants establish a symbiosis with rhizobia to enable nitrogen fixation in root nodules under the control of the presumed root-to-shoot-to-root negative feedback called autoregulation of nodulation. In Lotus japonicus , autoregulation is mediated by CLE-RS genes that are specifically expressed in the root, and the receptor kinase HAR1 that functions in the shoot. However, the mature functional structures of CLE-RS gene products and the molecular nature of CLE-RS/HAR1 signalling governed by these spatially distant components remain elusive. Here we show that CLE-RS2 is a post-translationally arabinosylated glycopeptide derived from the CLE domain. Chemically synthesized CLE-RS glycopeptides cause significant suppression of nodulation and directly bind to HAR1 in an arabinose-chain and sequence-dependent manner. In addition, CLE-RS2 glycopeptide specifically produced in the root is found in xylem sap collected from the shoot. We propose that CLE-RS glycopeptides are the long sought mobile signals responsible for the initial step of autoregulation of nodulation. Symbiotic bacteria form nodules with plant roots and this is controlled by CLE-RS genes found in the plant. In this study, the CLE-RS2 gene product is shown to be a glycopeptide that can travel from the roots to the shoot of plants and binds to the receptor kinase HAR1.