Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
371
result(s) for
"nonlinear ultrasonics"
Sort by:
Large Area Detection of Microstructural Defects with Multi-Mode Ultrasonic Signals
by
Ju, Taeho
,
Findikoglu, Alp T.
in
Cracks
,
finite-element method
,
finite-element method (FEM) simulation
2022
Cyclic loading or other stresses can lead to development of cracks and crack growth in mechanical structures, leading to eventual failure. While ultrasound imaging can be used for non-destructive testing of such structures, conventional ultrasound techniques are often limited by crack size, density, and areal coverage. An effective characterization of real-world, large-area structures is required at an early damage stage to prevent catastrophic failure and predict remaining life. In this study, a new nonlinear ultrasonic testing (NUT) method is proposed for large-area monitoring of practical structures with arbitrary complexity by using multiple-mode guided-wave ultrasonic signals. The proposed guided-wave NUT technique requires single-element transducers, simple electronics, and a mixed time-frequency domain signal processing. As a proof-of-concept demonstration, numerical simulations and experiments are performed on an A36 carbon steel beam assembly with previously formed microstructural defects that cause nonlinearities in ultrasonic response. The quadratic dependence of the nonlinear wave excitation on the input ultrasonic signal amplitude is shown by numerical simulations, and such a nonlinear ultrasonic response is experimentally observed in the zone with a high density of microstructural defects.
Journal Article
Quantitative Residual Stress Analysis in Steel Structures Using EMAT Nonlinear Acoustics
by
Bejarano, Álvaro Pallarés
,
Balasubramaniam, Kaleeswaran
,
Ortiz, Borja Nuevo
in
Acoustics
,
Analysis
,
Anisotropy
2025
Residual stress plays a critical role in the durability and structural integrity of steel rolls and bars. Proper analysis helps prevent defects like warping or cracking, ensuring the steel meets quality standards and performs reliably in critical applications. This paper presents a methodology for analysing residual stresses using electromagnetic acoustic transducer (EMAT) based nonlinear ultrasonics. It compares its effectiveness with established techniques such as X-ray diffraction (XRD) and coercive force measurements. The results demonstrate that nonlinear ultrasonics provides more detailed insights into stress distribution, particularly in subsurface regions where traditional methods like XRD face limitations. It also shows good sensitivity to stress-induced microstructural variations than coercive force measurements. This research study is the first to perform a comparative analysis using XRD, EMAT, and coercive force techniques on industrial samples, followed by the implementation of EMAT nonlinear technology at an industrial production site. The findings indicate a positive trend observed in XRD and coercive force results, and those from nonlinear ultrasonics, further validating its accuracy. Moreover, the technology has been successfully applied in steel manufacturing industries through the project named STEEL components assessment using a novel non-destructive residual stress ultrasonic technology (STEELAR), funded by the Research Fund for Coal and Steel (RFCS). These findings underscore the potential of nonlinear ultrasonics as a powerful, fast and complementary tool for comprehensive residual stress monitoring in steel components, enhancing both theoretical understanding and practical industrial application.
Journal Article
An instantaneous-baseline multi-indicial nonlinear ultrasonic resonance spectral correlation technique for fatigue crack detection and quantification
2021
This article presents an instantaneous-baseline multi-indicial nonlinear ultrasonic resonance spectral correlation technique for fatigue crack detection and quantification. A reduced-order nonlinear oscillator model is tailored to illuminate the contact acoustic nonlinearity (CAN) and the nonlinear resonance phenomena. The analytical formulation considers the rough surface condition of the fatigue cracks, with a crack open–close transitional range for the effective modeling of the variable-stiffness nonlinear mechanism. Multiple damage indices (DIs) associated with the degree of nonlinearity of the interrogated structures are then proposed by correlating the ultrasonic resonance spectra. Three perspectives of the nonlinear resonance phenomena are investigated to detect and monitor the fatigue crack growth: (1) time-history dependence, which evolves different resonance states depending on the loading history; (2) amplitude dependence, which renders significantly different nonlinear responses under various levels of excitation amplitudes; (3) breakage of superposition, which effectively distinguishes nonlinear resonant responses from the linear counterparts. These DIs are established using instantaneous baselines, facilitating the fatigue damage monitoring without the prior knowledge of a pristine structure. Fatigue tests on a thin aluminum plate with a rivet hole are conducted to induce fatigue cracks in the specimen. The experimental results demonstrate that the proposed technique shows remarkable sensitivity to the nucleation and growth of the fatigue cracks. This paper differs from the existing literature on nonlinear resonance-based techniques in that it focuses on the resonance phenomenon aroused by the contact acoustic nonlinearity from localized fatigue cracks, rather than the diffused material nonlinearity. The novelty of the paper resides in the establishment of an instantaneous baseline technique utilizing the nonlinear resonance features without the need of referring to a pristine baseline situation. The paper finishes with discussion, concluding remarks, and suggestions for future work.
Journal Article
Deep-Subwavelength-Optimized Holey-Structured Metamaterial Lens for Nonlinear Air-Coupled Ultrasonic Imaging
by
Meo, Michele
,
Malfense Fierro, Gian Piero
,
Pio Pucillo, Giovanni
in
Acoustics
,
air-coupled
,
Composite materials
2021
Ultrasound non-destructive testing (NDT) is a common technique used for defect detection in different materials, from aluminium to carbon-fiber-reinforced polymers (CFRPs). In most cases, a liquid coupling medium/immersion of the inspected component is required to maximize impedance matching, limiting the size of the structure and materials. Air-coupled inspection methods have recently been developed for noncontact inspections to reduce contact issues in standard ultrasonic inspections. However, transmission of ultrasound in air is very inefficient because of the enormous impedance mismatch between solids and air, thus requiring a signal amplification system of high-sensitivity transducers. Hence, the captured signal amplitude may not be high enough to reveal any wave distortion due to defects or damage. This work presents a design of a holey-structured metamaterial lens with a feature size of λ/14 aiming at improvement of acousto-ultrasonic imaging using air-coupled transducers. The required effect is obtained by matching geometrical parameters of the proposed holey-structured metamaterials and the Fabry–Perot resonance modes of the structure. Transmission tests have been conducted on different fabricated metamaterial-based structures, to assess the frequency component filtering of the proposed method in both acoustic (f = 5 kHz, 20 kHz) and ultrasonic range (f = 30 kHz, 40 kHz). Results showed an improved sensitivity of damage imaging, with an increase in amplitude of the design frequencies of the lens by 11 dB. Air-coupled inspections were conducted on a stress-corrosion cracked aluminum plate and impacted CFRP plate using the holey-structured lens. Results showed an improvement in the damage-imaging resolution due to a wave-amplitude increase across the defective features, thus demonstrating its potential as an efficient and sensitive inspection tool for damage-detection improvement in geometrically complex components of different materials.
Journal Article
Microstructural Characterization of Additively Manufactured Metal Components Using Linear and Nonlinear Ultrasonic Techniques
by
Park, Seong-Hyun
,
Song, Dong-Gi
,
Jhang, Kyung-Young
in
Additive manufacturing
,
Correlation analysis
,
Grain boundaries
2022
Metal additive manufacturing (AM) is an innovative manufacturing technology that uses a high-power laser for the layer-by-layer production of metal components. Despite many achievements in the field of AM, few studies have focused on the nondestructive characterization of microstructures, such as grain size and porosity. In this study, various microstructures of additively manufactured metal components were characterized non-destructively using linear/nonlinear ultrasonic techniques. The contributions of this study are as follows: (1) presenting correlation analyses of various microstructures (grain size and texture, lack of fusion, and porosity) and ultrasonic properties (ultrasonic velocity, attenuation, and nonlinearity parameters), (2) development of nondestructive microstructural characterization techniques for additively manufactured components; and (3) exploring the potential for the online monitoring of AM processes owing to the nondestructive nature of the proposed technique. The performance of the proposed technique was validated using additively manufactured samples under varying laser beam speed conditions. The characteristics of the target microstructures characterized using the proposed technique were consistent with the results obtained using destructive optical microscopy and electron back-scattered diffraction methods.
Journal Article
Monitoring Concrete Curing by Linear and Nonlinear Ultrasonic Methods
2021
Cement paste is the primary constituent of concrete that keeps all other constituents together and gives concrete its strength. During curing, the cement is developed as a binder by going through various chemical reactions. In the present study, ultrasonic testing is carried out on concrete samples during curing in transmission mode. The acoustic signals are generated using lead zirconate titanate (PZT) transducers which are excited by a sweeping frequency signal. Nondestructive testing and evaluation were carried out at various stages of curing for concrete with two different water-cement ratios (w/c). The obtained signals were processed to analyze the change in signal characteristics during the different stages of curing. It was found that the nonlinear ultrasonic technique called the side band peak count (SPC) index, which is derived from the frequency spectra, exhibits a clear distinction among various concrete specimens at different stages of curing. Linear ultrasonic parameters, however, do not show such consistency. Therefore, the nonlinear ultrasonic technique provides an easy and effective way for monitoring the degree of concrete curing. Keywords: curing stage; fast Fourier transform; guided waves; linear and nonlinear ultrasonic techniques; nondestructive testing; sideband peak count; time and frequency domain analysis; transmission mode.
Journal Article
Review of Second Harmonic Generation Measurement Techniques for Material State Determination in Metals
2015
This paper presents a comprehensive review of the current state of knowledge of second harmonic generation (SHG) measurements, a subset of nonlinear ultrasonic nondestructive evaluation techniques. These SHG techniques exploit the material nonlinearity of metals in order to measure the acoustic nonlinearity parameter,
β
. In these measurements, a second harmonic wave is generated from a propagating monochromatic elastic wave, due to the anharmonicity of the crystal lattice, as well as the presence of microstructural features such as dislocations and precipitates. This article provides a summary of models that relate the different microstructural contributions to
β
, and provides details of the different SHG measurement and analysis techniques available, focusing on longitudinal and Rayleigh wave methods. The main focus of this paper is a critical review of the literature that utilizes these SHG methods for the nondestructive evaluation of plasticity, fatigue, thermal aging, creep, and radiation damage in metals.
Journal Article
Characterization of GMAW (Gas Metal Arc Welding) Penetration Using Ultrasonics
by
Basantes-Defaz, Alexandra-Del-Carmen
,
Subramaniam, Sankaran
,
Zhang, Lu
in
Arc heating
,
Defective products
,
Defects
2020
Welding defects such as lack of penetration, undercutting, crater crack, burn-through and porosity can occur during manufacturing. Assessing weld quality using nondestructive evaluation methods is important for the quality assurance of welded parts. In this paper, the measurement of weld penetration, which is directly related to weld integrity, is investigated by means of ultrasonics. Both linear and nonlinear ultrasonic methods are studied to assess their sensitivities to weld penetration. Welded plates with different penetration depths controlled by changing weld heat input are manufactured using gas metal arc welding (GMAW). Microscopic properties are assessed after the ultrasonic measurements are completed. Numerical models are built using the weld profile obtained from macrographs to explain the relationship between linear ultrasonic and weld penetration. A quantitative correlation between weld morphology (shape, width and depth) and the energy of linear ultrasonic signal is determined, where the increase of weld bead penetration exceeding the plate thickness results in decrease of the energy of the ultrasonic signal. Minimum detectable weld morphology using linear ultrasonics is defined depending on the selected frequency. Microhardness measurement is conducted to explain the sensitivity of nonlinear ultrasonics to both weld penetration and heterogeneity in weld. The numerical and experimental results show that the weld geometry influences the ultrasonic measurement other than the materials’ properties.
Journal Article
Nonlinear Guided Wave Tomography for Detection and Evaluation of Early-Life Material Degradation in Plates
by
Tanweer, Sunia
,
Liu, Yang
,
Zhao, Chengwei
in
Acoustics
,
Decomposition
,
early-life material degradation
2021
In this paper, the possibility of using nonlinear ultrasonic guided waves for early-life material degradation in metal plates is investigated through both computational modeling and study. The analysis of the second harmonics of Lamb waves in a free boundary aluminum plate, and the internal resonance conditions between the Lamb wave primary modes and the second harmonics are investigated. Subsequently, Murnaghan’s hyperelastic model is implemented in a finite element (FE) analysis to study the response of aluminum plates subjected to a 60 kHz Hanning-windowed tone burst. Different stages of material degradation are reflected as the changes in the third order elastic constants (TOECs) of the Murnaghan’s model. The reconstructed degradations match the actual ones well across various degrees of degradation. The effects of several relevant factors on the accuracy of reconstructions are also discussed.
Journal Article
Experimental Verification of Contact Acoustic Nonlinearity at Rough Contact Interfaces
2021
When a longitudinal wave passes through a contact interface, second harmonic components are generated due to contact acoustic nonlinearity (CAN). The magnitude of the generated second harmonic is related to the contact state of the interface, of which a model has been developed using linear and nonlinear interfacial stiffness. However, this model has not been sufficiently verified experimentally for the case where the interface has a rough surface. The present study verifies this model through experiments using rough interfaces. To do this, four sets of specimens with different interface roughness values (Ra = 0.179 to 4.524 μm) were tested; one set consists of two Al6061-T6 blocks facing each other. The second harmonic component of the transmitted signal was analyzed while pressing on both sides of the specimen set to change the contact state of the interface. The experimental results showed good agreement with the theoretical prediction on the rough interface. The magnitude of the second harmonic was maximized at a specific contact pressure. As the roughness of the contact surface increased, the second harmonic was maximized at a higher contact pressure. The location of this maximal point was consistent between experiments and theory. In this study, an FEM simulation was conducted in parallel and showed good agreement with the theoretical results. Thus, the developed FEM model allows parametric studies on various states of contact interfaces.
Journal Article