Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Language
      Language
      Clear All
      Language
  • Subject
      Subject
      Clear All
      Subject
  • Item Type
      Item Type
      Clear All
      Item Type
  • Discipline
      Discipline
      Clear All
      Discipline
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
56 result(s) for "nucleic acid amplification test (NAAT)"
Sort by:
Lab-on-PCB with integrated DNA amplification and electroanalytical detection for point-of-care diagnostics
Nucleic acid amplification tests (NAATs) are powerful medical diagnostic tools for point-of-care (POC) and other field applications. However, traditional methods like quantitative PCR (qPCR) require complex, expensive equipment and trained operators, limiting their use to centralized labs. Isothermal alternatives, like Loop-mediated Isothermal Amplification (LAMP), are better adapted for POC devices. Lab-on-PCB systems have the potential to overcome the challenges faced by conventional microfabrication-based systems. This study presents a novel lab-on-PCB device for nucleic acid amplification and electrochemical detection using reverse transcription LAMP (RT-LAMP) of SARS-CoV-2. The system consists of two disposable PCB-based chips making it close to zero cost. One PCB is for heating and nucleic acid amplification, while the other is for electrochemical detection using Cyclic Voltammetry (CV) with a redox-active intercalator. The PCB slides are connected to a compact electronic device (< 10 USD) for controlling the heating and electroanalytical readout. Using this device, we achieved successful rapid (< 1.5 h) nucleic acid amplification and detection at a target concentration of 10 copies/reaction. This work represents a notable step toward developing integrated, portable NAAT devices for POC diagnostics.
Method for lysis and paper-based elution-free DNA extraction with colourimetric isothermal amplification
Nucleic acid amplification testing has great potential for point-of-need diagnostic testing with high detection sensitivity and specificity. Current sample preparation is limited by a tedious workflow requiring multiple steps, reagents and instrumentation, hampering nucleic acid testing at point of need. In this study, we present the use of mixed cellulose ester (MCE) paper for DNA binding by ionic interaction under molecular crowding conditions and fluid transport by wicking. The poly(ethylene) glycol-based (PEG) reagent simultaneously provides the high pH for alkaline lysis and crowding effects for ionic binding of the DNA under high salt conditions. In this study, we introduce Paper-based Abridged Solid-Phase Extraction with Alkaline Poly(ethylene) Glycol Lysis (PASAP). The anionic mixed cellulose ester (MCE) paper is used as solid phase and allows for fluid transport by wicking, eliminating the need for pipetting skills and the use of a magnet to retain beads. Following the release of DNA from the cells due to the lytic activity of the PASAP solution, the DNA binds to the anionic surface of the MCE paper, concentrating at the bottom while the sample matrix is transported towards the top by wicking. The paper was washed by dipping it in 40% isopropanol for 10 s. After air-drying for 30 s, the bottom section of the paper (3 mm × 4 mm) was snapped off using the cap of a PCR tube and immersed in the colourimetric loop-mediated isothermal amplification (cLAMP) solution for direct amplification and colourimetric detection. The total sample processing was completed in 15 min and ready for amplification. cLAMP enabled the detection of 10 2 CFU/mL of Escherichia coli ( E. coli ) from culture media and the detection of E. coli in milk < 10 3  CFU/mL (10 CFU) after incubation at 68 °C for 60 min, demonstrating applicability of the method to complex biological samples.
Progression of LAMP as a Result of the COVID-19 Pandemic: Is PCR Finally Rivaled?
Reflecting on the past three years and the coronavirus disease 19 (COVID-19) pandemic, varying global tactics offer insights into the most effective public-health responses. In the US, specifically, rapid and widespread testing was quickly prioritized to lower restrictions sooner. Essentially, only two types of COVID-19 diagnostic tests were publicly employed during the peak pandemic: the rapid antigen test and reverse transcription polymerase chain reaction (RT-PCR). However, neither test ideally suited the situation, as rapid antigen tests are far too inaccurate, and RT-PCR tests require skilled personnel and sophisticated equipment, leading to long wait times. Loop-mediated isothermal amplification (LAMP) is another exceptionally accurate nucleic acid amplification test (NAAT) that offers far quicker time to results. However, RT-LAMP COVID-19 tests have not been embraced as extensively as rapid antigen tests or RT-PCR. This review will investigate the performance of current RT-LAMP-based COVID-19 tests and summarize the reasons behind the hesitancy to embrace RT-LAMP instead of RT-PCR. We will also look at other LAMP platforms to explore possible improvements in the accuracy and portability of LAMP, which could be applied to COVID-19 diagnostics and future public-health outbreaks.
Prevalence and macrolide resistance of Mycoplasma genitalium from patients seeking sexual health care in Southern Ghana
Background Mycoplasma genitalium (MG), a sexually transmitted infection (STI), has emerged as a common cause of non-gonococcal urethritis and cervicitis worldwide, with documented resistance to commonly used antibiotics including doxycycline and azithromycin. Data in Ghana regarding the prevalence of MG is limited. Methods This retrospective study investigated MG presence and macrolide resistance among patients who previously reported to selected clinics for STI symptoms between December 2012 and June 2020. Samples were screened for MG and mutations associated with azithromycin resistance were investigated using Nucleic Acid Amplification Testing (NAAT) including the Resistance Plus MG ® kit from SpeeDx and the LightMix ® kit for MG, combined with the Modular Mycoplasma Macrolide from TIB Molbiol. Results A total of 1,015 samples were screened, out of which MG infection rate by TIB Molbiol and SpeeDx were 3.1% and 3.4%, respectively. The mutation responsible for macrolide resistance was detected in one MG positive sample by both assays. Both diagnostic tests revealed no significant association between MG infection and socio-demographic characteristics, clinical symptoms, gonorrhea, and chlamydia infection status. There was no significant difference in the mycoplasma percentage positivity rate detected using SpeeDx (3.4%) and TIB Molbiol (3.1%). Conclusions While not commonly tested as a cause of STI symptoms, MG is widespread in Ghana, exhibiting symptoms and prevalence comparable to those in other countries and linked to antimicrobial resistance. Future research using various molecular techniques is essential to monitor resistance trends and guide future antibiotic choices.
A one-pot, isothermal DNA sample preparation and amplification platform utilizing aqueous two-phase systems
Infectious diseases remain one of the major causes of death worldwide in developing countries. While screening via conventional polymerase chain reaction (PCR) is the gold standard in laboratory testing, its limited applications at the point-of-care have prompted the development of more portable nucleic acid detection systems. These include isothermal DNA amplification techniques, which are less equipment-intensive than PCR. Unfortunately, these techniques still require extensive sample preparation, limiting user accessibility. In this study, we introduce a novel system that combines thermophilic helicase-dependent amplification (tHDA) with a Triton X-100 micellar aqueous two-phase system (ATPS) to achieve cell lysis, lysate processing, and enhanced nucleic acid amplification in a simple, one-step process. The combined one-pot system was able to amplify and detect a target gene from whole-cell samples containing as low as 102 cfu/mL, and is the first known application of ATPSs to isothermal DNA amplification. This system’s ease-of-use and sensitivity underlie its potential as a point-of-care diagnostic platform to detect for infectious diseases.
Sexually transmitted infections in sexually abused children: an audit project to implement PCR tests in a child advocacy center in Türkiye
Background. Sexual abuse in children can sometimes result in sexually transmitted infections (STIs), which can serve as crucial forensic evidence. Although PCR methods are now accepted as the gold standard for STI screening, they have not yet widely replaced traditional culture methods in Türkiye. This study aims to assess the necessity of implementing PCR-based STI testing at Child Advocacy Centers in Türkiye, where such testing is not routinely available. Methods. Conducted between February and November 2023, this study included children who presented to the Child Advocacy Center of Marmara University Pendik Training and Research Hospital. High-risk victims were identified based on criteria including a history of penetrative sexual abuse and factors such as multiple perpetrators or significant age disparity. Serological tests and genital swabs were collected and analyzed using both bacterial culture methods and a comprehensive STI PCR panel. Results. The study included 20 victims, with a median age of 16 years. STI PCR testing detected pathogens in 19 out of 21 samples, including Chlamydia trachomatis (20%) and Neisseria gonorrhoeae (5%). In contrast, culture methods identified no sexually transmitted pathogens. Conclusion. PCR testing demonstrated significantly higher sensitivity for detecting STIs compared to traditional bacterial culture methods, as expected. Implementing PCR-based STI testing in Child Advocacy Centers is an urgent and essential need for providing an accurate diagnosis and robust forensic evidence, enhancing the care and legal protection of sexually abused children.
A Simple, Low-Cost Platform for Real-Time Isothermal Nucleic Acid Amplification
Advances in microfluidics and the introduction of isothermal nucleic acid amplification assays have resulted in a range of solutions for nucleic acid amplification tests suited for point of care and field use. However, miniaturisation of instrumentation for such assays has not seen such rapid advances and fluorescence based assays still depend on complex, bulky and expensive optics such as fluorescence microscopes, photomultiplier tubes and sensitive lens assemblies. In this work we demonstrate a robust, low cost platform for isothermal nucleic acid amplification on a microfluidic device. Using easily obtainable materials and commercial off-the-shelf components, we show real time fluorescence detection using a low cost photodiode and operational amplifier without need for lenses. Temperature regulation on the device is achieved using a heater fabricated with standard printed circuit board fabrication methods. These facile construction methods allow fabrications at a cost compatible with widespread deployment to resource poor settings.
Chemical Heating for Minimally Instrumented Point-of-Care (POC) Molecular Diagnostics
The minimal instrumentation of portable medical diagnostic devices for point-of-care applications is facilitated by using chemical heating in place of temperature-regulated electrical heaters. The main applications are for isothermal nucleic acid amplification tests (NAATs) and other enzymatic assays that require elevated, controlled temperatures. In the most common implementation, heat is generated by the exothermic reaction of a metal (e.g., magnesium, calcium, or lithium) with water or air, buffered by a phase-change material that maintains a near-constant temperature to heat the assay reactions. The ability to incubate NAATs electricity-free and to further to detect amplification with minimal instrumentation opens the door for fully disposable, inexpensive molecular diagnostic devices that can be used for pathogen detection as needed in resource-limited areas and during natural disasters, wars, and civil disturbances when access to electricity may be interrupted. Several design approaches are reviewed, including more elaborate schemes for multiple stages of incubation at different temperatures.
Fighting COVID-19: A quick review of diagnoses, therapies, and vaccines
The coronavirus disease 2019 (COVID-19) pandemic caused by a novel coronavirus, SARS-CoV-2, has infected more than 22 million individuals and resulted in over 780,000 deaths globally. The rapid spread of the virus and the precipitously increasing numbers of cases necessitate the urgent development of accurate diagnostic methods, effective treatments, and vaccines. Here, we review the progress of developing diagnostic methods, therapies, and vaccines for SARS-CoV-2 with a focus on current clinical trials and their challenges. For diagnosis, nucleic acid amplification tests remain the mainstay diagnostics for laboratory confirmation of SARS-CoV-2 infection, while serological antibody tests are used to aid contact tracing, epidemiological, and vaccine evaluation studies. Viral isolation is not recommended for routine diagnostic procedures due to safety concerns. Currently, no single effective drug or specific vaccine is available against SARS-CoV-2. Some candidate drugs targeting different levels and stages of human responses against COVID-19 such as cell membrane fusion, RNA-dependent RNA polymerase, viral protease inhibitor, interleukin 6 blocker, and convalescent plasma may improve the clinical outcomes of critical COVID-19 patients. Other supportive care measures for critical patients are still necessary. Advances in genetic sequencing and other technological developments have sped up the establishment of a variety of vaccine platforms. Accordingly, numerous vaccines are under development. Vaccine candidates against SARS-CoV-2 are mainly based upon the viral spike protein due to its vital role in viral infectivity, and most of these candidates have recently moved into clinical trials. Before the efficacy of such vaccines in humans is demonstrated, strong international coordination and collaboration among studies, pharmaceutical companies, regulators, and governments are needed to limit further damage due the emerging SARS-CoV-2 virus.
Aptima Trichomonas vaginalis assay elucidates significant underdiagnosis of trichomoniasis among women in Brazil according to an observational study
Objectives Trichomonas vaginalis (TV) infection is the most common non-viral STI globally and can result in adverse pregnancy outcomes and exacerbated HIV acquisition/transmission. Nucleic acid amplification tests (NAATs) are the most sensitive diagnostic tests, with high specificity, but TV NAATs are rarely used in Brazil. We investigated the TV prevalence and compared the performance of the US Food and Drug Association-cleared Aptima TV assay with microscopy (wet mount and Gram-stained) and culture for TV detection in women in Pelotas, Brazil in an observational study.MethodsFrom August 2015 to December 2016, 499 consecutive asymptomatic and symptomatic sexually active women attending a Gynaecology and Obstetrics Outpatient Clinic were enrolled. Vaginal fluid and swab specimens were collected and wet mount microscopy, Gram-stained microscopy, culture and the Aptima TV assay performed.ResultsThe median age of enrolled women was 36.5 years (range: 15–77). The majority were white, had a steady sexual partner and low levels of education. The TV detection rate was 4.2%, 2.4%, 1.2% and 0% using the Aptima TV assay, culture, wet mount microscopy and Gram-stained microscopy, respectively. The sensitivity of culture and wet mount microscopy was only 57.1% (95% CI 36.5 to 75.5) and 28.6% (95% CI 13.8 to 50.0), respectively.ConclusionsA 4.2% positivity rate of T. vaginalis was found among women in Pelotas, Brazil and the routine diagnostic test (wet mount microscopy) and culture had low sensitivities. More sensitive diagnostic tests (NAATs) and enhanced testing of symptomatic and asymptomatic at-risk women are crucial to mitigate the transmission of TV infection, TV-associated sequelae and enhanced HIV acquisition and transmission.