Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
171 result(s) for "nuisance function"
Sort by:
WILKS’ THEOREM FOR SEMIPARAMETRIC REGRESSIONS WITH WEAKLY DEPENDENT DATA
The empirical likelihood inference is extended to a class of semiparametric models for stationary, weakly dependent series. A partially linear singleindex regression is used for the conditional mean of the series given its past, and the present and past values of a vector of covariates. A parametric model for the conditional variance of the series is added to capture further nonlinear effects. We propose suitable moment equations which characterize the mean and variance model. We derive an empirical log-likelihood ratio which includes nonparametric estimators of several functions, and we show that this ratio behaves asymptotically as if the functions were given.
The Partial Linear Model in High Dimensions
Partial linear models have been widely used as flexible method for modelling linear components in conjunction with non-parametric ones. Despite the presence of the non-parametric part, the linear, parametric part can under certain conditions be estimated with parametric rate. In this paper, we consider a high-dimensional linear part. We show that it can be estimated with oracle rates, using the least absolute shrinkage and selection operator penalty for the linear part and a smoothness penalty for the nonparametric part.
Nonparametric Regression With Predictors Missing at Random
Nonparametric regression with predictors missing at random (MAR), where the probability of missing depends only on observed variables, is considered. Univariate predictor is the primary case of interest. A new adaptive orthogonal series estimator is developed. Large sample theory shows that the estimator is rate-minimax and it is also sharp-minimax whenever predictors are missing completely at random (MCAR). Furthermore, confidence bands, estimation of nuisance functions, including conditional probability of observing the predictor, design density and scale, and multiple regression are also considered. Numerical study and a real example show feasibility of the proposed methodology for small samples. Supplementary materials, containing results of the numerical study, are available online.
Estimation in semiparametric models with missing data
This paper considers the problem of parameter estimation in a general class of semiparametric models when observations are subject to missingness at random. The semiparametric models allow for estimating functions that are non-smooth with respect to the parameter. We propose a nonparametric imputation method for the missing values, which then leads to imputed estimating equations for the finite dimensional parameter of interest. The asymptotic normality of the parameter estimator is proved in a general setting, and is investigated in detail for a number of specific semiparametric models. Finally, we study the small sample performance of the proposed estimator via simulations.
First-differencing in panel data models with incidental functions
This note discusses a class of models for panel data that accommodate betweengroup heterogeneity that is allowed to exhibit positive within-group variance. Such a setup generalizes the traditional fixed-effect paradigm in which between-group heterogeneity is limited to univariate factors that act like constants within groups. Notable members of the class of models considered are non-linear regression models with additive heterogeneity and multiplicative-error models suitable for non-negative limited dependent variables. The heterogeneity is modelled as a non-parametric nuisance function of covariates whose functional form is fixed within groups but is allowed to vary freely across groups. A simple approach to perform inference in such situations is based on local first-differencing of observations within a given group. This leads to moment conditions that, asymptotically, are free of nuisance functions. Conventional generalized method of moments procedures can then be readily applied. In particular, under suitable regularity conditions, such estimators are consistent and asymptotically normal, and asymptotically valid inference can be performed using a plug-in estimator of the asymptotic variance.
On the Elimination of Nuisance Parameters in the Proportional Odds Model
The problem of eliminating nuisance parameters in the context of the proportional odds model is considered. The technique used involves a form of sequential conditioning but it is not equivalent to a conditional or partial likelihood. Applications to ordered responses in the context of a matched pairs design are considered but the method can also be used where the responses are continuous.
A GENERAL THEORY OF HYPOTHESIS TESTS AND CONFIDENCE REGIONS FOR SPARSE HIGH DIMENSIONAL MODELS
We consider the problem of uncertainty assessment for low dimensional components in high dimensional models. Specifically, we propose a novel decorrelated score function to handle the impact of high dimensional nuisance parameters. We consider both hypothesis tests and confidence regions for generic penalized M-estimators. Unlike most existing inferential methods which are tailored for individual models, our method provides a general framework for high dimensional inference and is applicable to a wide variety of applications. In particular, we apply this general framework to study five illustrative examples: linear regression, logistic regression, Poisson regression, Gaussian graphical model and additive hazards model. For hypothesis testing, we develop general theorems to characterize the limiting distributions of the decorrelated score test statistic under both null hypothesis and local alternatives. These results provide asymptotic guarantees on the type I errors and local powers. For confidence region construction, we show that the decorrelated score function can be used to construct point estimators that are asymptotically normal and semiparametrically efficient. We further generalize this framework to handle the settings of misspecified models. Thorough numerical results are provided to back up the developed theory.
TEST OF SIGNIFICANCE FOR HIGH-DIMENSIONAL LONGITUDINAL DATA
This paper concerns statistical inference for longitudinal data with ultrahigh dimensional covariates. We first study the problem of constructing confidence intervals and hypothesis tests for a low-dimensional parameter of interest. The major challenge is how to construct a powerful test statistic in the presence of high-dimensional nuisance parameters and sophisticated within-subject correlation of longitudinal data. To deal with the challenge, we propose a new quadratic decorrelated inference function approach which simultaneously removes the impact of nuisance parameters and incorporates the correlation to enhance the efficiency of the estimation procedure. When the parameter of interest is of fixed dimension, we prove that the proposed estimator is asymptotically normal and attains the semiparametric information bound, based on which we can construct an optimal Wald test statistic. We further extend this result and establish the limiting distribution of the estimator under the setting with the dimension of the parameter of interest growing with the sample size at a polynomial rate. Finally, we study how to control the false discovery rate (FDR) when a vector of high-dimensional regression parameters is of interest. We prove that applying the Storey (J. R. Stat. Soc. Ser. B. Stat. Methodol. 64 (2002) 479–498) procedure to the proposed test statistics for each regression parameter controls FDR asymptotically in longitudinal data. We conduct simulation studies to assess the finite sample performance of the proposed procedures. Our simulation results imply that the newly proposed procedure can control both Type I error for testing a low dimensional parameter of interest and the FDR in the multiple testing problem. We also apply the proposed procedure to a real data example.
Cognitive and Ocular Factors Jointly Determine Pupil Responses under Equiluminance
Changes in pupil diameter can reflect high-level cognitive signals that depend on central neuromodulatory mechanisms. However, brain mechanisms that adjust pupil size are also exquisitely sensitive to changes in luminance and other events that would be considered a nuisance in cognitive experiments recording pupil size. We implemented a simple auditory experiment involving no changes in visual stimulation. Using finite impulse-response fitting we found pupil responses triggered by different types of events. Among these are pupil responses to auditory events and associated surprise: cognitive effects. However, these cognitive responses were overshadowed by pupil responses associated with blinks and eye movements, both inevitable nuisance factors that lead to changes in effective luminance. Of note, these latter pupil responses were not recording artifacts caused by blinks and eye movements, but endogenous pupil responses that occurred in the wake of these events. Furthermore, we identified slow (tonic) changes in pupil size that differentially influenced faster (phasic) pupil responses. Fitting all pupil responses using gamma functions, we provide accurate characterisations of cognitive and non-cognitive response shapes, and quantify each response's dependence on tonic pupil size. These results allow us to create a set of recommendations for pupil size analysis in cognitive neuroscience, which we have implemented in freely available software.
A NOTE ON INFORMATION BIAS AND EFFICIENCY OF COMPOSITE LIKELIHOOD
Although the properties of inferences based on a composite likelihood are well established, they can be surprising, leading to misleading results. In this note, we show by example that the variance of a maximum composite likelihood estimator can increase when the nuisance parameters are known, rather than estimated. In addition, we show that estimators based on more independent component likelihoods can be less efficient than those based on fewer such likelihoods, and that incorporating higher-dimensional marginal densities can also lead to a less efficient inference. The role of information bias is highlighted to understand why these paradoxical phenomena occur.