Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Series Title
      Series Title
      Clear All
      Series Title
  • Reading Level
      Reading Level
      Clear All
      Reading Level
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Content Type
    • Item Type
    • Is Full-Text Available
    • Subject
    • Publisher
    • Source
    • Donor
    • Language
    • Place of Publication
    • Contributors
    • Location
224,238 result(s) for "nutrient"
Sort by:
Global resorption efficiencies and concentrations of carbon and nutrients in leaves of terrestrial plants
Nutrient resorption in plants influences nutrient availability and cycling and is a key process in biogeochemical models. Improved estimates of resorption parameters are needed for predicting long-term primary productivity and for improving such models. Currently, most models assume a value of 50% resorption for nitrogen (N) and phosphorus (P) and lack resorption data for other nutrients and for specific vegetation types. We provide global estimates of resorption efficiencies and nutrient concentrations for carbon (C), N, and P and the first global-scale estimates for essential nutrients such as potassium (K), calcium (Ca), and magnesium (Mg). We also examine leaf mass loss during senescence (LML) globally and for different plant types, thus defining a mass loss correction factor (MLCF) needed to quantify unbiased resorption values. We used a global meta-analysis of 86 studies and ∼1000 data points across climates for green and senesced leaves in six plant types: ferns, forbs, graminoids, conifers, and evergreen and deciduous woody angiosperms. In general, N and P resorption differed significantly from the commonly used global value of 50% (62.1%, 64.9%, respectively; P < 0.05). Ca, C, and Mg showed lower average resorptions of 10.9%, 23.2%, and 28.6%, respectively, while K had the highest resorption, at 70.1%. We also found that resorption of all nutrients except Ca depended on leaf nutrient-status; globally, C, N, P, K, and Mg showed a decrease in resorption with increased nutrient status. On average, global leaf mass loss was 24.2%. Overall, our resorption data differ substantially from commonly assumed values and should help improve ecological theory and biogeochemical and land-surface models.
Foliar nutrient concentrations and resorption efficiency in plants of contrasting nutrient‐acquisition strategies along a 2‐million‐year dune chronosequence
Long‐term pedogenesis leads to important changes in the availability of soil nutrients, especially nitrogen (N) and phosphorus (P). Changes in the availability of micronutrients can also occur, but are less well understood. We explored whether changes in leaf nutrient concentrations and resorption were consistent with a shift from N to P limitation of plant productivity with soil age along a > 2‐million‐year dune chronosequence in south‐western Australia. We also compared these traits among plants of contrasting nutrient‐acquisition strategies, focusing on N, P and micronutrients. The range in leaf [P] for individual species along the chronosequence was exceptionally large for both green (103–3000 μg P g⁻¹) and senesced (19–5600 μg P g⁻¹) leaves, almost equalling that found globally. From the youngest to the oldest soil, cover‐weighted mean leaf [P] declined from 1840 to 228 μg P g⁻¹, while P‐resorption efficiency increased from 0% to 79%. All species converged towards a highly conservative P‐use strategy on the oldest soils. Declines in cover‐weighted mean leaf [N] with soil age were less strong than for leaf [P], ranging from 13.4 mg N g⁻¹ on the youngest soil to 9.5 mg N g⁻¹ on the oldest soil. However, mean leaf N‐resorption efficiency was greatest (45%) on the youngest, N‐poor soils. Leaf N:P ratio increased from 8 on the youngest soil to 42 on the oldest soil. Leaf zinc (Zn) concentrations were low across all chronosequence stages, but mean Zn‐resorption efficiency was greatest (55–74%) on the youngest calcareous dunes, reflecting low Zn availability at high pH. N₂‐fixing species had high leaf [N] compared with other species. Non‐mycorrhizal species had very low leaf [P] and accumulated Mn across all soils. We surmise that this reflects Mn solubilization by organic acids released for P acquisition. Synthesis. Our results show community‐wide variation in leaf nutrient concentrations and resorption that is consistent with a shift from N to P limitation during long‐term ecosystem development. High Zn resorption on young calcareous dunes supports the possibility of micronutrient co‐limitation. High leaf [Mn] on older dunes suggests the importance of carboxylate release for P acquisition. Our results show a strong effect of soil nutrient availability on nutrient‐use efficiency and reveal considerable differences among plants of contrasting nutrient‐acquisition strategies.
Influence of root and leaf traits on the uptake of nutrients in cover crops
Aims Cover crops play an important role in soil fertility as they can accumulate large amounts of nutrients. This study aimed at understanding the nutrient uptake capacity of a wide range of cover crops and at assessing the relevance of acquisition strategies. Methods A field experiment was conducted to characterize 20 species in terms of leaf and root traits. Plant traits were related to nutrient concentration and shoot biomass production with a redundancy analysis. Acquisition strategies were identified using a cluster analysis. Results Root systems varied greatly among cover crop species. Five nutrient acquisition strategies were delineated. Significant amounts of nutrients (about 120 kg ha⁻¹ of nitrogen, 30 kg ha⁻¹ of phosphorus and 190 kg ha⁻¹ of potassium) were accumulated by the species in a short period. Nutrient acquisition strategies related to high accumulations of nutrients consisted in either high shoot biomass and root mass and dense tissues, or high nutrient concentrations and root length densities. Species with high root length densities showed lower C/N ratios. Conclusions The same amounts of nutrients were accumulated by groups with different acquisition strategies. However, their nutrient concentrations offer different perspectives in terms of nutrient release for the subsequent crop and nutrient cycling improvement.
Differential effects of soil chemistry on the foliar resorption of nitrogen and phosphorus across altitudinal gradients
Nutrient resorption from senescing leaves prior to litterfall is a strategy for nutrient conservation in vascular plants. However, the mechanisms through which soil fertility and/or foliar nutrient status affect nutrient resorption are not yet fully known. We used two 1,000‐m‐wide altitudinal gradients on two different bedrock types (carbonate and silicate) for analysing the interactive effects of temperature and soil chemistry on the resorption efficiency of two major nutrients, nitrogen (N) and phosphorus (P). Our objective was to assess how nutrient resorption varied across the gradients through the adaptation of individual species to changing environmental conditions rather than through changes in species composition. Both N and P resorption efficiency increased across the altitudinal gradients independent of bedrock type. The main process regulating nutrient resorption was a negative feedback to nutrient availability in the soil. The negative feedback of nutrient resorption efficiency to soil nutrient status was unrelated to total soil nutrient contents but depended on concentrations of organic N forms for nitrogen resorption efficiency (NRE) and on inorganic P forms for phosphorus resorption efficiency (PRE), respectively. While we hypothesized that the resorption of P, as a principally rock‐derived nutrient, depended on physical–chemical processes affected by soil chemistry, our results showed that microbial P mineralization was the main source of inorganic P supply to the plants. Both NRE and PRE were effective to improve the growth potential of plants, but there was no evidence of stoichiometric adaptations of N:P RE‐to‐nutrient ratio in the soil. A plain language summary is available for this article. Plain Language Summary
Changes in nitrogen and phosphorus cycling suggest a transition to phosphorus limitation with the stand development of larch plantations
Aims The changes of nutrient limitation status for tree growth across a plantation chronosequence have great implications for plantation management. The underlying mechanisms for such a shift, however, have seldom been addressed. While plant nutrient use strategies would change in response to soil nutrient alteration, they may also create feedback on soil nutrient dynamics and thus plant nutrient limitation status. Methods We examined soil and foliar nutrients of larch (Larix kaempferi), the dominant timber species in Northeast China, across a plantation chronosequence. Results Total soil N increased but total soil P decreased across the chronosequence. Similarly, N concentrations in the green leaves were positively correlated, and P concentrations were negatively correlated with stand age. Foliar N:P ratios, N and P resorption efficiencies and PRE:NRE were positively correlated with stand age, indicating the shift from N-limitation to P-limitation across the chronosequence. P concentration in senesced leaves decreased and N:P ratios increased across the chronosequence, which has implications for decomposition and nutrient release. Conclusions Nutrient resorption, soil pH, biomass P sequestration and imbalanced inputs of N and P would contribute to the occurrence of P-limitation with increased stand age. Furthermore, adaptive fertilization management strategies should consider the shift of nutrient limitation patterns across the chronosequence.
Plant mineral nutrition and disease resistance: A significant linkage for sustainable crop protection
Complete and balanced nutrition has always been the first line of plant defense due to the direct involvement of mineral elements in plant protection. Mineral elements affect plant health directly by modulating the activity of redox enzymes or improving the plant vigor indirectly by altering root exudates, and changing microflora population dynamics, rhizosphere soil nutrient content, pH fluctuation, lignin deposition, and phytoalexin biosynthesis. Nitrogen (N) is one of the most important macronutrients having a significant impact on the host-pathogen axis. N negatively affects the plant’s physical defense along with the production of antimicrobial compounds, but it significantly alleviates defense-related enzyme levels that can eventually assist in systemic resistance. Potassium (K) is an essential plant nutrient, when it is present in adequate concentration, it can certainly increase the plant’s polyphenolic concentrations, which play a critical role in the defense mechanism. Although no distinguished role of phosphorus (P) is observed in plant disease resistance, a high P content may increase the plant’s susceptibility toward the invader. Manganese (Mn) is one of the most important micronutrients, which have a vital effect on photosynthesis, lignin biosynthesis, and other plant metabolic functions. Zinc (Zn) is a part of enzymes that are involved in auxin synthesis, infectivity, phytotoxin, and mycotoxin production in pathogenic microorganisms. Similarly, many other nutrients also have variable effects on enhancing or decreasing the host susceptibility toward disease onset and progression, thereby making integrative plant nutrition an indispensable component of sustainable agriculture. However, there are still many factors influencing the triple interaction of host-pathogen-mineral elements, which are not yet unraveled. Thereby, the present review has summarized the recent progress regarding the use of macro- and micronutrients in sustainable agriculture and their role in plant disease resistance.
Incorporation of biochar and semi-interpenetrating biopolymer to synthesize new slow release fertilizers and their impact on soil moisture and nutrients availability
Chemical fertilizers (CFs) are indispensable nutrients source for plants replenishing them with essential nutrients. However, their over-utilization imposed destructive consequences of excessive loss of major nutrients resulting in low nutrient use efficiency and further environmental concerns. Therefore, to counter excessive application of CFs and to regulate sustainable agriculture, a novel biochar (BC)-based slow-release fertilizer (SRF) was developed by incorporating mica (MI) and semi-interpenetrating chitosan polymer (Semi-IPN) via graft co-polymerization. Fabricated SRFs were characterized and their nutrient release dynamics as well as soil water holding (WH) and water retention (WR) capacity were investigated. The results revealed that BC-based SRFs, particularly BC-SRF and BCMI-SRF, enhanced soil WH capacity by 40.61% and 47.80%, respectively, whereas the highest soil WR capacity was recorded as 32.55% and 35.52% respectively, after 30 days. The nutrients (NH 4 + -N, P, K) release ratio of CF and MI was recorded in the range of 85–100%, however BC and MI incorporated SRFs showed splendid slow release nutrients dynamics and release 75.53% of NH 4 + -N, 65.66% of P and 71.83% of K in a 30 days incubation experiment. Nutrient release kinetics exhibited diffusion and mass transport as the major nutrient release mechanisms, which was confirmed by the best fitted parabolic diffusion and first order kinetics models. Hence, current study inclusively demonstrated new routes for synthesis of innovative and eco-friendly SRFs with substantial slow-release performance to overcome excessive nutrient loss by application of CF.
Nutrient interactions and arbuscular mycorrhizas: a meta-analysis of a mycorrhiza-defective mutant and wild-type tomato genotype pair
BACKGROUND AND AIMS: Arbuscular mycorrhizas (AM) enhance plant uptake of a range of mineral nutrients from the soil. Interactions between nutrients in the soil and plant, are complex, and can be affected by AM. Using a mycorrhiza-defective mutant tomato genotype (rmc) and its wild-type (76R), provides a novel method to study AM functioning. METHODS: We present a meta-analysis comparing tissue nutrient concentration (P, Zn, K, Ca, Cu, Mg, Mn, S, B, Na, Fe), biomass and mycorrhizal colonisation data between the 76R and rmc genotypes, across a number of studies that have used this pair of tomato genotypes. Particular attention is paid to interactions between soil P or soil Zn, with tissue nutrients. RESULTS: For most nutrients, the difference in concentration between genotypes was significantly affected either by soil P, soil Zn, or both. When soil P was deficient, AM were particularly beneficial in terms of uptake of not only P, but other nutrients as well. CONCLUSIONS: Colonisation by AMF significantly affects the uptake of many soil macro- and micro-nutrients. Furthermore, the soil P and Zn status also influences the difference in nutrient concentrations between mycorrhizal and non-mycorrhizal plants. The interactions identified by this meta-analysis provide a basis for future research in this area.