Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
7
result(s) for
"object-based building change detection"
Sort by:
Change Detection of Building Objects in High-Resolution Single-Sensor and Multi-Sensor Imagery Considering the Sun and Sensor’s Elevation and Azimuth Angles
2021
Building change detection is a critical field for monitoring artificial structures using high-resolution multitemporal images. However, relief displacement depending on the azimuth and elevation angles of the sensor causes numerous false alarms and misdetections of building changes. Therefore, this study proposes an effective object-based building change detection method that considers azimuth and elevation angles of sensors in high-resolution images. To this end, segmentation images were generated using a multiresolution technique from high-resolution images after which object-based building detection was performed. For detecting building candidates, we calculated feature information that could describe building objects, such as rectangular fit, gray-level co-occurrence matrix (GLCM) homogeneity, and area. Final building detection was then performed considering the location relationship between building objects and their shadows using the Sun’s azimuth angle. Subsequently, building change detection of final building objects was performed based on three methods considering the relationship of the building object properties between the images. First, only overlaying objects between images were considered to detect changes. Second, the size difference between objects according to the sensor’s elevation angle was considered to detect the building changes. Third, the direction between objects according to the sensor’s azimuth angle was analyzed to identify the building changes. To confirm the effectiveness of the proposed object-based building change detection performance, two building density areas were selected as study sites. Site 1 was constructed using a single sensor of KOMPSAT-3 bitemporal images, whereas Site 2 consisted of multi-sensor images of KOMPSAT-3 and unmanned aerial vehicle (UAV). The results from both sites revealed that considering additional shadow information showed more accurate building detection than using feature information only. Furthermore, the results of the three object-based change detections were compared and analyzed according to the characteristics of the study area and the sensors. Accuracy of the proposed object-based change detection results was achieved over the existing building detection methods.
Journal Article
Object-Based Building Change Detection by Fusing Pixel-Level Change Detection Results Generated from Morphological Building Index
2020
Change detection (CD) is an important tool in remote sensing. CD can be categorized into pixel-based change detection (PBCD) and object-based change detection (OBCD). PBCD is traditionally used because of its simple and straightforward algorithms. However, with increasing interest in very-high-resolution (VHR) imagery and determining changes in small and complex objects such as buildings or roads, traditional methods showed limitations, for example, the large number of false alarms or noise in the results. Thus, researchers have focused on extending PBCD to OBCD. In this study, we proposed a method for detecting the newly built-up areas by extending PBCD results into an OBCD result through the Dempster–Shafer (D–S) theory. To this end, the morphological building index (MBI) was used to extract built-up areas in multitemporal VHR imagery. Then, three PBCD algorithms, change vector analysis, principal component analysis, and iteratively reweighted multivariate alteration detection, were applied to the MBI images. For the final CD result, the three binary change images were fused with the segmented image using the D–S theory. The results obtained from the proposed method were compared with those of PBCD, OBCD, and OBCD results generated by fusing the three binary change images using the major voting technique. Based on the accuracy assessment, the proposed method produced the highest F1-score and kappa values compared with other CD results. The proposed method can be used for detecting new buildings in built-up areas as well as changes related to demolished buildings with a low rate of false alarms and missed detections compared with other existing CD methods.
Journal Article
An Object-Based Bidirectional Method for Integrated Building Extraction and Change Detection between Multimodal Point Clouds
by
Dai, Chenguang
,
Zhang, Zhenchao
,
Lin, Dong
in
Accuracy
,
airborne laser scanning
,
Airborne lasers
2020
Building extraction and change detection are two important tasks in the remote sensing domain. Change detection between airborne laser scanning data and photogrammetric data is vulnerable to dense matching errors, mis-alignment errors and data gaps. This paper proposes an unsupervised object-based method for integrated building extraction and change detection. Firstly, terrain, roofs and vegetation are extracted from the precise laser point cloud, based on “bottom-up” segmentation and clustering. Secondly, change detection is performed in an object-based bidirectional manner: Heightened buildings and demolished buildings are detected by taking the laser scanning data as reference, while newly-built buildings are detected by taking the dense matching data as reference. Experiments on two urban data sets demonstrate its effectiveness and robustness. The object-based change detection achieves a recall rate of 92.31% and a precision rate of 88.89% for the Rotterdam dataset; it achieves a recall rate of 85.71% and a precision rate of 100% for the Enschede dataset. It can not only extract unchanged building footprints, but also assign heightened or demolished labels to the changed buildings.
Journal Article
Object-Based Analysis of Airborne LiDAR Data for Building Change Detection
2014
Building change detection is useful for land management, disaster assessment, illegal building identification, urban growth monitoring, and geographic information database updating. This study proposes an automatic method that applies object-based analysis to multi-temporal point cloud data to detect building changes. The aim of this building change detection method is to identify areas that have changed and to obtain from-to information. In this method, the data are first preprocessed to generate two sets of digital surface models (DSMs), digital elevation models, and normalized DSMs from registered old and new point cloud data. Thereafter, on the basis of differential DSM, candidates for changed building objects are identified from the points in the smooth areas by using a connected component analysis technique. The random sample consensus fitting algorithm is then used to distinguish the true changed buildings from trees. The changed building objects are classified as “newly built”, “taller”, “demolished” or “lower” by using rule-based analysis. Finally, a test data set consisting of many buildings of different types in an 8.5 km2 area is selected for the experiment. In the test data set, the method correctly detects 97.8% of buildings larger than 50 m2. The accuracy of the method is 91.2%. Furthermore, to decrease the workload of subsequent manual checking of the result, the confidence index for each changed object is computed on the basis of object features.
Journal Article
Reproducibility and Practical Adoption of GEOBIA with Open-Source Software in Docker Containers
2017
Geographic Object-Based Image Analysis (GEOBIA) mostly uses proprietary software,but the interest in Free and Open-Source Software (FOSS) for GEOBIA is growing. This interest stems not only from cost savings, but also from benefits concerning reproducibility and collaboration. Technical challenges hamper practical reproducibility, especially when multiple software packages are required to conduct an analysis. In this study, we use containerization to package a GEOBIA workflow in a well-defined FOSS environment. We explore the approach using two software stacks to perform an exemplary analysis detecting destruction of buildings in bi-temporal images of a conflict area. The analysis combines feature extraction techniques with segmentation and object-based analysis to detect changes using automatically-defined local reference values and to distinguish disappeared buildings from non-target structures. The resulting workflow is published as FOSS comprising both the model and data in a ready to use Docker image and a user interface for interaction with the containerized workflow. The presented solution advances GEOBIA in the following aspects: higher transparency of methodology; easier reuse and adaption of workflows; better transferability between operating systems; complete description of the software environment; and easy application of workflows by image analysis experts and non-experts. As a result, it promotes not only the reproducibility of GEOBIA, but also its practical adoption.
Journal Article
Monitoring of Building Construction by 4D Change Detection Using Multi-temporal SAR Images
2017
Monitoring urban changes is important for city management, urban planning, updating of cadastral map, etc. In contrast to conventional field surveys, which are usually expensive and slow, remote sensing techniques are fast and cost-effective alternatives. Spaceborne synthetic aperture radar (SAR) sensors provide radar images captured rapidly over vast areas at fine spatiotemporal resolution. In addition, the active microwave sensors are capable of day-and-night vision and independent of weather conditions. These advantages make multi-temporal SAR images suitable for scene monitoring. Persistent scatterer interferometry (PSI) detects and analyses PS points, which are characterized by strong, stable, and coherent radar signals throughout a SAR image sequence and can be regarded as substructures of buildings in built-up cities. Attributes of PS points, for example, deformation velocities, are derived and used for further analysis. Based on PSI, a 4D change detection technique has been developed to detect disappearance and emergence of PS points (3D) at specific times (1D). In this paper, we apply this 4D technique to the centre of Berlin, Germany, to investigate its feasibility and application for construction monitoring. The aims of the three case studies are to monitor construction progress, business districts, and single buildings, respectively. The disappearing and emerging substructures of the buildings are successfully recognized along with their occurrence times. The changed substructures are then clustered into single construction segments based on DBSCAN clustering and α-shape outlining for object-based analysis. Compared with the ground truth, these spatiotemporal results have proven able to provide more detailed information for construction monitoring.
Journal Article
NATIONWIDE HYBRID CHANGE DETECTION OF BUILDINGS
by
Halounova, L.
,
Hron, V.
2016
The Fundamental Base of Geographic Data of the Czech Republic (hereinafter FBGD) is a national 2D geodatabase at a 1:10,000 scale with more than 100 geographic objects. This paper describes the design of the permanent updating mechanism of buildings in FBGD. The proposed procedure belongs to the category of hybrid change detection (HCD) techniques which combine pixel-based and object-based evaluation. The main sources of information for HCD are cadastral information and bi-temporal vertical digital aerial photographs. These photographs have great information potential because they contain multispectral, position and also elevation information. Elevation information represents a digital surface model (DSM) which can be obtained using the image matching technique. Pixel-based evaluation of bi-temporal DSMs enables fast localization of places with potential building changes. These coarse results are subsequently classified through the object-based image analysis (OBIA) using spectral, textural and contextual features and GIS tools. The advantage of the two-stage evaluation is the pre-selection of locations where image segmentation (a computationally demanding part of OBIA) is performed. It is not necessary to apply image segmentation to the entire scene, but only to the surroundings of detected changes, which contributes to significantly faster processing and lower hardware requirements. The created technology is based on open-source software solutions that allow easy portability on multiple computers and parallelization of processing. This leads to significant savings of financial resources which can be expended on the further development of FBGD.
Journal Article