Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
5
result(s) for
"operational curtailment"
Sort by:
Effects of Wind Turbine Curtailment on Bird and Bat Fatalities
2020
Bird and bat fatalities increase with wind energy expansion and the only effective fatality-reduction measure has been operational curtailment, which has been documented for bats but not for birds. We performed opportune before-after, control-impact (BACI) experiments of curtailment effects on bird and bat fatalities and nocturnal passage rates during fall migration at 2 wind projects, where 1 continued operating and the other shut down from peak migration to the study’s end (study 1). We also performed BACI experiments during a 3-year study of curtailment and operational effects on bird fatalities among wind turbines of varying operational status (study 2). In study 1, wind turbine curtailment significantly reduced near-misses and rotor-disrupted flights of bats, and it significantly reduced fatalities of bats but not of birds. In study 2, converting wind turbines from inoperable to operable status did not significantly increase bird fatalities, and bird species of hole or sheltered-ledge nesters or roosters on human-made structures died in substantial numbers at vacant towers. Of bird species represented by fatalities in study 2, 79% were found at inoperable wind turbines. Because the migration season is relatively brief, seasonal curtailment would greatly reduce bat fatalities for a slight loss in annual energy generation, but it might not benefit many bird species.
Journal Article
A smart curtailment approach for reducing bat fatalities and curtailment time at wind energy facilities
2019
The development and expansion of wind energy is considered a key global threat to bat populations. Bat carcasses are being found underneath wind turbines across North and South America, Eurasia, Africa, and the Austro-Pacific. However, relatively little is known about the comparative impacts of techniques designed to modify turbine operations in ways that reduce bat fatalities associated with wind energy facilities. This study tests a novel approach for reducing bat fatalities and curtailment time at a wind energy facility in the United States, then compares these results to operational mitigation techniques used at other study sites in North America and Europe. The study was conducted in Wisconsin during 2015 using a new system of tools for analyzing bat activity and wind speed data to make near real-time curtailment decisions when bats are detected in the area at control turbines (N = 10) vs. treatment turbines (N = 10). The results show that this smart curtailment approach (referred to as Turbine Integrated Mortality Reduction, TIMR) significantly reduced fatality estimates for treatment turbines relative to control turbines for pooled species data, and for each of five species observed at the study site: pooled data (–84.5%); eastern red bat (Lasiurus borealis, –82.5%); hoary bat (Lasiurus cinereus, –81.4%); silver-haired bat (Lasionycteris noctivagans, –90.9%); big brown bat (Eptesicus fuscus, –74.2%); and little brown bat (Myotis lucifugus, –91.4%). The approach reduced power generation and estimated annual revenue at the wind energy facility by ≤ 3.2% for treatment turbines relative to control turbines, and we estimate that the approach would have reduced curtailment time by 48% relative to turbines operated under a standard curtailment rule used in North America. This approach significantly reduced fatalities associated with all species evaluated, each of which has broad distributions in North America and different ecological affinities, several of which represent species most affected by wind development in North America. While we recognize that this approach needs to be validated in other areas experiencing rapid wind energy development, we anticipate that this approach has the potential to significantly reduce bat fatalities in other ecoregions and with other bat species assemblages in North America and beyond.
Journal Article
Two-Stage Coordinated Operational Strategy for Distributed Energy Resources Considering Wind Power Curtailment Penalty Cost
2017
The concept of virtual power plant (VPP) has been proposed to facilitate the integration of distributed renewable energy. VPP behaves similar to a single entity that aggregates a collection of distributed energy resources (DERs) such as distributed generators, storage devices, flexible loads, etc., so that the aggregated power outputs can be flexibly dispatched and traded in electricity markets. This paper presents an optimal scheduling model for VPP participating in day-ahead (DA) and real-time (RT) markets. In the DA market, VPP aims to maximize the expected profit and reduce the risk in relation to uncertainties. The risk is measured by a risk factor based on the mean-variance Markowitz theory. In the RT market, VPP aims to minimize the imbalance cost and wind power curtailment by adjusting the scheduling of DERs in its portfolio. In case studies, the benefits (e.g., surplus profit and reduced wind power curtailment) of aggregated VPP operation are assessed. Moreover, we have investigated how these benefits are affected by different risk-aversion levels and uncertainty levels. According to the simulation results, the aggregated VPP scheduling approach can effectively help the integration of wind power, mitigate the impact of uncertainties, and reduce the cost of risk-aversion.
Journal Article
Chapter 18 - Role of Power System Flexibility
by
Ulbig, Andreas
,
Andersson, Göran
in
Generation curtailment
,
Grid integration of renewable energy sources (RES)
,
Load shedding
2014
Operational flexibility is an important property of electric power systems and plays a crucial role for the transition of existing power systems, many of them based on fossil fuels, toward power systems that can efficiently accommodate high shares of variable renewable energy sources (RESs). The availability of sufficient operational flexibility in a given power system is a necessary precondition for the effective grid integration of large shares of fluctuating power in-feed from variable RESs (e.g. wind power and photovoltaics.
This chapter analyzes the role of operational flexibility in power systems and its value for the grid integration of high shares of RESs. A new method for assessing the technically available operational flexibility is presented and applied to illustrative examples. The necessary metrics for defining power system operational flexibility (i.e. the power ramp rate and power and energy capability of generators, loads, and storage devices) are presented.
Book Chapter