Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
540 result(s) for "optical vegetation index"
Sort by:
Evaluation of optical and microwave-derived vegetation indices for monitoring aboveground biomass over China
The microwave-derived vegetation optical depth (VOD) products were used to monitor aboveground biomass (AGB) at regional to global scales, but the ability of VOD to monitor AGB in China is uncertain. This study evaluated the sensitivity of four VOD products (e.g. L-VOD, IB-VOD, LPDR-VOD, and Liu-VOD) and optical vegetation indices (VI) (e.g. NDVI, EVI, LAI, and tree cover from MODIS) to the AGB across China. Our results showed tree cover product has the highest spatial agreement with reference AGBs (indicated by the median correlation value of 0.85), followed by L-VOD (with a median correlation value of 0.80), which performs better than other VIs and VODs. Further comparisons between reference and estimated AGB computed using the fitted logistic regression showed that AGB estimations from tree cover and L-VOD outperformed the estimations from other VIs and VODs over most vegetation types (except forest), indicated by the higher median correlation value of 0.86 and 0.83 and lower RMSD of 23.9 and 27.3 Mg/ha, respectively. The good performance of tree cover could be partly due to that tree cover product is not independent from the reference AGBs. The good performance of L-VOD can be explained by its higher sensitivity to the vegetation characteristics of the entire canopy (including woody component), relative to other VODs and VIs. Among the six reference AGB products, Saatchi-WT and Saatchi-RF products were found to have the best correlations with VIs and VODs. This study demonstrates that microwave VODs, particularly L-VOD, are effective proxies for large-scale monitoring of vegetation AGB in China.
Combined Multi-Temporal Optical and Radar Parameters for Estimating LAI and Biomass in Winter Wheat Using HJ and RADARSAR-2 Data
Leaf area index (LAI) and biomass are frequently used target variables for agricultural and ecological remote sensing applications. Ground measurements of winter wheat LAI and biomass were made from March to May 2014 in the Yangling district, Shaanxi, Northwest China. The corresponding remotely sensed data were obtained from the earth-observation satellites Huanjing (HJ) and RADARSAT-2. The objectives of this study were (1) to investigate the relationships of LAI and biomass with several optical spectral vegetation indices (OSVIs) and radar polarimetric parameters (RPPs), (2) to estimate LAI and biomass with combined OSVIs and RPPs (the product of OSVIs and RPPs (COSVI-RPPs)), (3) to use multiple stepwise regression (MSR) and partial least squares regression (PLSR) to test and compare the estimations of LAI and biomass in winter wheat, respectively. The results showed that LAI and biomass were highly correlated with several OSVIs (the enhanced vegetation index (EVI) and modified triangular vegetation index 2 (MTVI2)) and RPPs (the radar vegetation index (RVI) and double-bounce eigenvalue relative difference (DERD)). The product of MTVI2 and DERD (R2 = 0.67 and RMSE = 0.68, p < 0.01) and that of MTVI2 and RVI (R2 = 0. 68 and RMSE = 0.65, p < 0.01) were strongly related to LAI, and the product of the optimized soil adjusted vegetation index (OSAVI) and DERD (R2 = 0.79 and RMSE = 148.65 g/m2, p < 0.01) and that of EVI and RVI (R2 = 0. 80 and RMSE = 146.33 g/m2, p < 0.01) were highly correlated with biomass. The estimation accuracy of LAI and biomass was better using the COSVI-RPPs than using the OSVIs and RPPs alone. The results revealed that the PLSR regression equation better estimated LAI and biomass than the MSR regression equation based on all the COSVI-RPPs, OSVIs, and RPPs. Our results indicated that the COSVI-RPPs can be used to robustly estimate LAI and biomass. This study may provide a guideline for improving the estimations of LAI and biomass of winter wheat using multisource remote sensing data.
Influence of Bacillus subtilis on the physiological state of wheat and the microbial community of the soil under different rates of nitrogen fertilizers
The effects of inoculation with bacteria Bacillus subtilis strain No. 2 (hereinafter, B. subtilis 2) and of the physical properties of the soil on the physiological state of wheat (Triticum aestivum L.) plants and the soil microbial community under different rates of nitrogen fertilizers are studied. In the field, the physiological state of wheat was evaluated using the optical vegetation index. It was found that (1) the impact of B. subtilis 2 on plants decreases with an increase in the rate of fertilizers and soil bulk density, (2) the inoculation of wheat with bacteria enhances the resistance of the plant-microbial system to the adverse impact of high rates of nitrogen fertilizers due to the rearrangement of bacteria in rhizosphere ecological niches, and (3) the highest agronomic efficiency of nitrogen fertilizers is observed in wheat inoculation with B. subtilis 2 at the rate of nitrogen fertilization of 120 kg/ha.
Cereal Yield Modeling in Finland Using Optical and Radar Remote Sensing
During 1996–2006, the Ministry of Agriculture and Forestry in Finland (MAFF), MTT Agrifood Research and the Finnish Geodetic Institute performed a joint remote sensing satellite research project. It evaluated the applicability of optical satellite (Landsat, SPOT) data for cereal yield estimations in the annual crop inventory program. Four Optical Vegetation Indices models (I: Infrared polynomial, II: NDVI, III: GEMI, IV: PARND/FAPAR) were validated to estimate cereal baseline yield levels (yb) using solely optical harmonized satellite data (Optical Minimum Dataset). The optimized Model II (NDVI) yb level was 4,240 kg/ha (R2 0.73, RMSE 297 kg/ha) for wheat and 4390 kg/ha (R2 0.61, RMSE 449 kg/ha) for barley and Model I yb was 3,480 kg/ha for oats (R2 0.76, RMSE 258 kg/ha). Optical VGI yield estimates were validated with CropWatN crop model yield estimates using SPOT and NOAA data (mean R2 0.71, RMSE 436 kg/ha) and with composite SAR/ASAR and NDVI models (mean R2 0.61, RMSE 402 kg/ha) using both reflectance and backscattering data. CropWatN and Composite SAR/ASAR & NDVI model mean yields were 4,754/4,170 kg/ha for wheat, 4,192/3,848 kg/ha for barley and 4,992/2,935 kg/ha for oats.
Retrieval and Comparison of Forest Leaf Area Index Based on Remote Sensing Data from AVNIR-2, Landsat-5 TM, MODIS, and PALSAR Sensors
Remote sensing data from multi-source optical and SAR (Synthetic Aperture Radar) sensors have been widely utilized to detect forest dynamics under a variety of conditions. Due to different temporal coverage, spatial resolution, and spectral characteristics, these sensors usually perform differently from one another. To conduct statistical modeling accuracies evaluation and comparison among several sensors, a linear statistical model was applied in this study for retrieval and comparative analysis based on remote-sensing indices from optical sensors of ALOS AVNIR-2 (Advanced Land Observing Satellite Advanced Visible and Near Infrared Radiometer type 2), Landsat-5 TM (Thematic Mapper), MODIS NBAR (Moderate Resolution Imaging Spectroradiometer Nadir BRDF-Adjusted Reflectance), and the SAR sensor of ALOS PALSAR (Advanced Land Observing Satellite Phased Array type L-band Synthetic Aperture Radar), respectively. This modeling used the forest leaf area index (LAI) as the field measured variable. During modeling, six optical vegetation indices were selected for evaluation and comparison between the three optical sensors, while simultaneously, two radar indices were calculated for the comparison between ALOS AVNIR-2 and PALSAR sensors. The gap between the spatial resolution of remote-sensing data and field plot size can account for the different accuracies found in this study. This study provides a reference for the selection of remote-sensing data types and spatial resolution in specific forest monitoring applications with different data acquisition costs and accuracy needs. Normally, at regional and national scales, remote sensing data with 30 m spatial resolution (e.g., Landsat) could provide significant results in the statistical modelling and retrieval of LAI while the MODIS cannot always meet the requirements.
Time Series of Remote Sensing Data for Interaction Analysis of the Vegetation Coverage and Dust Activity in the Middle East
Motivated by the lack of research on land cover and dust activity in the Middle East, this study seeks to increase the understanding of the sensitivity of dust centers to climatic and surface conditions in this specific region. In this regard, we explore vegetation cover and dust emission interactions using 16-day long-term Normalized Difference Vegetation Index (NDVI) data and daily Aerosol Optical Depth (AOD) data from Moderate Resolution Imaging Spectroradiometer (MODIS) and conduct spatiotemporal and statistical analyses. Eight major dust hotspots were identified based on long-term AOD data (2000–2019). Despite the relatively uniform climate conditions prevailing throughout the region during the study period, there is considerable spatial variability in interannual relationships between AOD and NDVI. Three subsets of periods (2000–2006, 2007–2013, 2014–2019) were examined to assess periodic spatiotemporal changes. In the second period (2007–2013), AOD increased significantly (6% to 32%) across the studied hotspots, simultaneously with a decrease in NDVI (−0.9% to −14.3%) except in Yemen−Oman. Interannual changes over 20 years showed a strong relationship between reduced vegetation cover and increased dust intensity. The correlation between NDVI and AOD (−0.63) for the cumulative region confirms the significant effect of vegetation canopy on annual dust fluctuations. According to the results, changes in vegetation cover have an essential role in dust storm fluctuations. Therefore, this factor must be regarded along with wind speed and other climate factors in Middle East dust hotspots related to research and management efforts.
Investigation of observed dust trends over the Middle East region in NASA Goddard Earth Observing System (GEOS) model simulations
Satellite observations and ground-based measurements have indicated a high variability in the aerosol optical depth (AOD) in the Middle East region in recent decades. In the period that extends from 2003 to 2012, observations show a positive AOD trend of 0.01–0.04 per year or a total increase of 0.1–0.4 per decade. This study aimed to investigate if the observed trend was also captured by the NASA Goddard Earth Observing System (GEOS) model. To this end, we examined changes in the simulated dust emissions and dust AOD during this period. To understand the factors driving the increase in AOD in this region we also examined meteorological and surface parameters important for dust emissions, such as wind fields and soil moisture. Two GEOS model simulations were used in this study: the Modern-Era Retrospective analysis for Research and Applications, Version 2 (MERRA-2) reanalysis (with meteorological and aerosol AOD data assimilated) and MERRA-2 Global Modeling Initiative (GMI) Replay (with meteorology constrained by the MERRA-2 reanalysis but without aerosol assimilation). We did not find notable changes in the modeled 10 m wind speed and soil moisture. However, analysis of Moderate Resolution Imaging Spectroradiometer (MODIS) normalized difference vegetation index (NDVI) data did show an average decrease of 8 % per year in the region encompassing Syria and Iraq, which prompted us to quantify the effects of vegetation on dust emissions and AOD in the Middle East region. This was done by performing a sensitivity experiment in which we enhanced dust emissions in grid cells where the NDVI decreased. The simulation results supported our hypothesis that the loss of vegetation cover and the associated increase in dust emissions over Syria and Iraq can partially explain the increase in AOD downwind. The model simulations indicated dust emissions need to be 10-fold larger in those grid cells in order to reproduce the observed AOD and trend in the model.
Sun/Shade Separation in Optical and Thermal UAV Images for Assessing the Impact of Agricultural Practices
Unmanned aerial vehicles (UAVs) provide images at decametric spatial resolutions. Their flexibility, efficiency, and low cost make it possible to apply UAV remote sensing to multisensor data acquisition. In this frame, the present study aims at employing RGB UAV images (at a 3 cm resolution) and multispectral images (at a 16 cm resolution) with related vegetation indices (VIs) for mapping surfaces according to their illumination. The aim is to map land cover in order to access temperature distribution and compare NDVI and MTVI2 dynamics as a function of their illuminance. The method, which is based on a linear discriminant analysis, is validated at different periods during the phenological cycle of the crops in place. A model based on a given date is evaluated, as well as the use of a generic model. The method provides a good capacity of separation between four classes: vegetation, no-vegetation, shade, and sun (average kappa of 0.93). The effects of agricultural practices on two adjacent plots of maize respectively submitted to conventional and conservation farming are assessed. The transition from shade to sun increases the brightness temperature by 2.4 °C and reduces the NDVI by 26% for non-vegetated surfaces. The conservation farming plot is found to be 1.9 °C warmer on the 11th of July 2019, with no significant difference between vegetation in the sun or shade. The results also indicate that the NDVI of non-vegetated areas is increased by the presence of crop residues on the conservation agriculture plot and by the effect of shade on the conventional plot which is different for MTVI2.
Assessing the sensitivity of multi-frequency passive microwave vegetation optical depth to vegetation properties
Vegetation attenuates the microwave emission from the land surface. The strength of this attenuation is quantified in models in terms of the parameter vegetation optical depth (VOD) and is influenced by the vegetation mass, structure, water content, and observation wavelength. Earth observation satellite sensors operating in the microwave frequencies are used for global VOD retrievals, enabling the monitoring of vegetation at large scales. VOD has been used to determine above-ground biomass, monitor phenology, or estimate vegetation water status. VOD can be also used for constraining land surface models or modelling wildfires at large scales. Several VOD products exist, differing by frequency/wavelength, sensor, and retrieval algorithm. Numerous studies present correlations or empirical functions between different VOD datasets and vegetation variables such as the normalized difference vegetation index, leaf area index, gross primary production, biomass, vegetation height, or vegetation water content. However, an assessment of the joint impact of land cover, vegetation biomass, leaf area, and moisture status on the VOD signal is challenging and has not yet been done. This study aims to interpret the VOD signal as a multi-variate function of several descriptive vegetation variables. The results will help to select VOD at the most suitable wavelength for specific applications and can guide the development of appropriate observation operators to integrate VOD with large-scale land surface models. Here we use VOD from the Land Parameter Retrieval Model (LPRM) in the Ku, X, and C bands from the harmonized Vegetation Optical Depth Climate Archive (VODCA) dataset and L-band VOD derived from Soil Moisture and Ocean Salinity (SMOS) and Soil Moisture Active Passive (SMAP) sensors. The leaf area index, live-fuel moisture content, above-ground biomass, and land cover are able to explain up to 93 % and 95 % of the variance (Nash–Sutcliffe model efficiency coefficient) in 8-daily and monthly VOD within a multi-variable random forest regression. Thereby, the regression reproduces spatial patterns of L-band VOD and spatial and temporal patterns of Ku-, X-, and C-band VOD. Analyses of accumulated local effects demonstrate that Ku-, X-, and C-band VOD are mostly sensitive to the leaf area index, and L-band VOD is most sensitive to above-ground biomass. However, for all VODs the global relationships with vegetation properties are non-monotonic and complex and differ with land cover type. This indicates that the use of simple global regressions to estimate single vegetation properties (e.g. above-ground biomass) from VOD is over-simplistic.
A Review of Spectral Indices for Mangrove Remote Sensing
Mangrove ecosystems provide critical goods and ecosystem services to coastal communities and contribute to climate change mitigation. Over four decades, remote sensing has proved its usefulness in monitoring mangrove ecosystems on a broad scale, over time, and at a lower cost than field observation. The increasing use of spectral indices has led to an expansion of the geographical context of mangrove studies from local-scale studies to intercontinental and global analyses over the past 20 years. In remote sensing, numerous spectral indices derived from multiple spectral bands of remotely sensed data have been developed and used for multiple studies on mangroves. In this paper, we review the range of spectral indices produced and utilised in mangrove remote sensing between 1996 and 2021. Our findings reveal that spectral indices have been used for a variety of mangrove aspects but excluded identification of mangrove species. The included aspects are mangrove extent, distribution, mangrove above ground parameters (e.g., carbon density, biomass, canopy height, and estimations of LAI), and changes to the aforementioned aspects over time. Normalised Difference Vegetation Index (NDVI) was found to be the most widely applied index in mangroves, used in 82% of the studies reviewed, followed by the Enhanced Vegetation Index (EVI) used in 28% of the studies. Development and application of potential indices for mangrove cover characterisation has increased (currently 6 indices are published), but NDVI remains the most popular index for mangrove remote sensing. Ultimately, we identify the limitations and gaps of current studies and suggest some future directions under the topic of spectral index application in connection to time series imagery and the fusion of optical sensors for mangrove studies in the digital era.