Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
249 result(s) for "oracle property"
Sort by:
High-Dimensional Sparse Additive Hazards Regression
High-dimensional sparse modeling with censored survival data is of great practical importance, as exemplified by modern applications in high-throughput genomic data analysis and credit risk analysis. In this article, we propose a class of regularization methods for simultaneous variable selection and estimation in the additive hazards model, by combining the nonconcave penalized likelihood approach and the pseudoscore method. In a high-dimensional setting where the dimensionality can grow fast, polynomially or nonpolynomially, with the sample size, we establish the weak oracle property and oracle property under mild, interpretable conditions, thus providing strong performance guarantees for the proposed methodology. Moreover, we show that the regularity conditions required by the L ₁ method are substantially relaxed by a certain class of sparsity-inducing concave penalties. As a result, concave penalties such as the smoothly clipped absolute deviation, minimax concave penalty, and smooth integration of counting and absolute deviation can significantly improve on the L ₁ method and yield sparser models with better prediction performance. We present a coordinate descent algorithm for efficient implementation and rigorously investigate its convergence properties. The practical use and effectiveness of the proposed methods are demonstrated by simulation studies and a real data example.
STRONG ORACLE OPTIMALITY OF FOLDED CONCAVE PENALIZED ESTIMATION
Folded concave penalization methods have been shown to enjoy the strong oracle property for high-dimensional sparse estimation. However, a folded concave penalization problem usually has multiple local solutions and the oracle property is established only for one of the unknown local solutions. A challenging fundamental issue still remains that it is not clear whether the local optimum computed by a given optimization algorithm possesses those nice theoretical properties. To close this important theoretical gap in over a decade, we provide a unified theory to show explicitly how to obtain the oracle solution via the local linear approximation algorithm. For a folded concave penalized estimation problem, we show that as long as the problem is localizable and the oracle estimator is well behaved, we can obtain the oracle estimator by using the one-step local linear approximation. In addition, once the oracle estimator is obtained, the local linear approximation algorithm converges, namely it produces the same estimator in the next iteration. The general theory is demonstrated by using four classical sparse estimation problems, that is, sparse linear regression, sparse logistic regression, sparse precision matrix estimation and sparse quantile regression.
A Concave Pairwise Fusion Approach to Subgroup Analysis
An important step in developing individualized treatment strategies is correct identification of subgroups of a heterogeneous population to allow specific treatment for each subgroup. This article considers the problem using samples drawn from a population consisting of subgroups with different mean values, along with certain covariates. We propose a penalized approach for subgroup analysis based on a regression model, in which heterogeneity is driven by unobserved latent factors and thus can be represented by using subject-specific intercepts. We apply concave penalty functions to pairwise differences of the intercepts. This procedure automatically divides the observations into subgroups. To implement the proposed approach, we develop an alternating direction method of multipliers algorithm with concave penalties and demonstrate its convergence. We also establish the theoretical properties of our proposed estimator and determine the order requirement of the minimal difference of signals between groups to recover them. These results provide a sound basis for making statistical inference in subgroup analysis. Our proposed method is further illustrated by simulation studies and analysis of a Cleveland heart disease dataset. Supplementary materials for this article are available online.
A Selective Review of Group Selection in High-Dimensional Models
Grouping structures arise naturally in many statistical modeling problems. Several methods have been proposed for variable selection that respect grouping structure in variables. Examples include the group LASSO and several concave group selection methods. In this article, we give a selective review of group selection concerning methodological developments, theoretical properties and computational algorithms. We pay particular attention to group selection methods involving concave penalties. We address both group selection and bi-level selection methods. We describe several applications of these methods in nonparametric additive models, semiparametric regression, seemingly unrelated regressions, genomic data analysis and genome wide association studies. We also highlight some issues that require further study.
On the Adaptive Elastic-Net with a Diverging Number of Parameters
We consider the problem of model selection and estimation in situations where the number of parameters diverges with the sample size. When the dimension is high, an ideal method should have the oracle property [J. Amer Statist. Assoc. 96 (2001) 1348-1360] and [Ann. Statist. 32 (2004) 928-961] which ensures the optimal large sample performance. Furthermore, the highdimensionality often induces the collinearity problem, which should be properly handled by the ideal method. Many existing variable selection methods fail to achieve both goals simultaneously. In this paper, we propose the adaptive elastic-net that combines the strengths of the quadratic regularization and the adaptively weighted lasso shrinkage. Under weak regularity conditions, we establish the oracle property of the adaptive elastic-net. We show by simulations that the adaptive elastic-net deals with the collinearity problem better than the other oracle-like methods, thus enjoying much improved finite sample performance.
Variable Selection With Prior Information for Generalized Linear Models via the Prior LASSO Method
LASSO is a popular statistical tool often used in conjunction with generalized linear models that can simultaneously select variables and estimate parameters. When there are many variables of interest, as in current biological and biomedical studies, the power of LASSO can be limited. Fortunately, so much biological and biomedical data have been collected and they may contain useful information about the importance of certain variables. This article proposes an extension of LASSO, namely, prior LASSO (pLASSO), to incorporate that prior information into penalized generalized linear models. The goal is achieved by adding in the LASSO criterion function an additional measure of the discrepancy between the prior information and the model. For linear regression, the whole solution path of the pLASSO estimator can be found with a procedure similar to the least angle regression (LARS). Asymptotic theories and simulation results show that pLASSO provides significant improvement over LASSO when the prior information is relatively accurate. When the prior information is less reliable, pLASSO shows great robustness to the misspecification. We illustrate the application of pLASSO using a real dataset from a genome-wide association study. Supplementary materials for this article are available online.
A SELECTIVE OVERVIEW OF VARIABLE SELECTION IN HIGH DIMENSIONAL FEATURE SPACE
High dimensional statistical problems arise from diverse fields of scientific research and technological development. Variable selection plays a pivotal role in contemporary statistical learning and scientific discoveries. The traditional idea of best subset selection methods, which can be regarded as a specific form of penalized likelihood, is computationally too expensive for many modern statistical applications. Other forms of penalized likelihood methods have been successfully developed over the last decade to cope with high dimensionality. They have been widely applied for simultaneously selecting important variables and estimating their effects in high dimensional statistical inference. In this article, we present a brief account of the recent developments of theory, methods, and implementations for high dimensional variable selection. What limits of the dimensionality such methods can handle, what the role of penalty functions is, and what the statistical properties are rapidly drive the advances of the field. The properties of non-concave penalized likelihood and its roles in high dimensional statistical modeling are emphasized. We also review some recent advances in ultra-high dimensional variable selection, with emphasis on independence screening and two-scale methods.
IDENTIFYING LATENT STRUCTURES IN PANEL DATA
This paper provides a novel mechanism for identifying and estimating latent group structures in panel data using penalized techniques. We consider both linear and nonlinear models where the regression coefficients are heterogeneous across groups but homogeneous within a group and the group membership is unknown. Two approaches are considered—penalized profile likelihood (PPL) estimation for the general nonlinear models without endogenous regressors, and penalized GMM (PGMM) estimation for linear models with endogeneity. In both cases, we develop a new variant of Lasso called classifier-Lasso (C-Lasso) that serves to shrink individual coefficients to the unknown group-specific coefficients. C-Lasso achieves simultaneous classification and consistent estimation in a single step and the classification exhibits the desirable property of uniform consistency. For PPL estimation, C-Lasso also achieves the oracle property so that group-specific parameter estimators are asymptotically equivalent to infeasible estimators that use individual group identity information. For PGMM estimation, the oracle property of C-Lasso is preserved in some special cases. Simulations demonstrate good finite-sample performance of the approach in both classification and estimation. Empirical applications to both linear and nonlinear models are presented.
GLOBALLY ADAPTIVE QUANTILE REGRESSION WITH ULTRA-HIGH DIMENSIONAL DATA
Quantile regression has become a valuable tool to analyze heterogeneous covaraite-response associations that are often encountered in practice. The development of quantile regression methodology for high-dimensional covariates primarily focuses on the examination of model sparsity at a single or multiple quantile levels, which are typically prespecified ad hoc by the users. The resulting models may be sensitive to the specific choices of the quantile levels, leading to difficulties in interpretation and erosion of confidence in the results. In this article, we propose a new penalization framework for quantile regression in the high-dimensional setting. We employ adaptive L₁ penalties, and more importantly, propose a uniform selector of the tuning parameter for a set of quantile levels to avoid some of the potential problems with model selection at individual quantile levels. Our proposed approach achieves consistent shrinkage of regression quantile estimates across a continuous range of quantiles levels, enhancing the flexibility and robustness of the existing penalized quantile regression methods. Our theoretical results include the oracle rate of uniform convergence and weak convergence of the parameter estimators. We also use numerical studies to confirm our theoretical findings and illustrate the practical utility of our proposal.
ADAPTIVE LASSO FOR SPARSE HIGH-DIMENSIONAL REGRESSION MODELS
We study the asymptotic properties of the adaptive Lasso estimators in sparse, high-dimensional, linear regression models when the number of covariates may increase with the sample size. We consider variable selection using the adaptive Lasso, where the L1 norms in the penalty are re-weighted by data-dependent weights. We show that, if a reasonable initial estimator is available, under appropriate conditions, the adaptive Lasso correctly selects covariates with nonzero coefficients with probability converging to one, and that the estimators of nonzero coefficients have the same asymptotic distribution they would have if the zero coefficients were known in advance. Thus, the adaptive Lasso has an oracle property in the sense of Fan and Li (2001) and Fan and Peng (2004). In addition, under a partial orthogonality condition in which the covariates with zero coefficients are weakly correlated with the covariates with nonzero coefficients, marginal regression can be used to obtain the initial estimator. With this initial estimator, the adaptive Lasso has the oracle property even when the number of covariates is much larger than the sample size.