Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
265 result(s) for "orbital experiment"
Sort by:
Status of the K-EUSO Orbital Detector of Ultra-High Energy Cosmic Rays
K-EUSO (KLYPVE-EUSO) is a planned orbital mission aimed at studying ultra-high energy cosmic rays (UHECRs) by detecting fluorescence and Cherenkov light emitted by extensive air showers in the nocturnal atmosphere of Earth in the ultraviolet (UV) range. The observatory is being developed within the JEM-EUSO collaboration and is planned to be deployed on the International Space Station after 2025 and operated for at least two years. The telescope, consisting of ∼105 independent pixels, will allow a spatial resolution of ∼0.6 km on the ground, and, from a 400 km altitude, it will achieve a large and full sky exposure to sample the highest energy range of the UHECR spectrum. We provide a comprehensive review of the current status of the development of the K-EUSO experiment, paying special attention to its hardware parts and expected performance. We demonstrate how results of the K-EUSO mission can complement the achievements of the existing ground-based experiments and push forward the intriguing studies of ultra-high energy cosmic rays, as well as bring new knowledge about other phenomena manifesting themselves in the atmosphere in the UV range.
Neural Network Based Approach to Recognition of Meteor Tracks in the Mini-EUSO Telescope Data
Mini-EUSO is a wide-angle fluorescence telescope that registers ultraviolet (UV) radiation in the nocturnal atmosphere of Earth from the International Space Station. Meteors are among multiple phenomena that manifest themselves not only in the visible range but also in the UV. We present two simple artificial neural networks that allow for recognizing meteor signals in the Mini-EUSO data with high accuracy in terms of a binary classification problem. We expect that similar architectures can be effectively used for signal recognition in other fluorescence telescopes, regardless of the nature of the signal. Due to their simplicity, the networks can be implemented in onboard electronics of future orbital or balloon experiments.
A Computational Study of the Mechanics of Gravity-induced Torque on Cells
In this paper we use Nace’s previous work in order to model the effects of gravity in cells and similar objects. In the presence of the gravitational field of a primary body, the gravity vector can result in numerous effects, some of which are tension, shear, and finally torque. To model the torque effect we use a complete expression for the gravitational acceleration, as this is given on the surface of a planetary body as well as in orbit around it. In particular, on the surface of the Earth the acceleration is corrected for the effect of oblateness and rotation. In the gravitational acceleration the effect of oblateness can be modeled with the inclusion of a term that contains the harmonic coefficient, as well as a term that depends on the square of angular velocity of the Earth. In orbit the acceleration of gravity at the point of the spacecraft is a function of the orbital elements and includes, only in our case, the harmonic since no Coriolis force is felt by the spacecraft. We derive analytical expressions and calculate the resulting torque effects for various geocentric latitudes, as well as circular and elliptical orbits of various eccentricities and inclinations. We find that elliptical polar orbits result in higher torques, and that higher eccentricities result in higher the torque effects. To any measurable extent, our results do not drastically impact any existing biophysical conclusions.
High-dimensional quantum cryptography with twisted light
Quantum key distribution (QKD) systems often rely on polarization of light for encoding, thus limiting the amount of information that can be sent per photon and placing tight bounds on the error rates that such a system can tolerate. Here we describe a proof-of-principle experiment that indicates the feasibility of high-dimensional QKD based on the transverse structure of the light field allowing for the transfer of more than 1 bit per photon. Our implementation uses the orbital angular momentum (OAM) of photons and the corresponding mutually unbiased basis of angular position (ANG). Our experiment uses a digital micro-mirror device for the rapid generation of OAM and ANG modes at 4 kHz, and a mode sorter capable of sorting single photons based on their OAM and ANG content with a separation efficiency of 93%. Through the use of a seven-dimensional alphabet encoded in the OAM and ANG bases, we achieve a channel capacity of 2.05 bits per sifted photon. Our experiment demonstrates that, in addition to having an increased information capacity, multilevel QKD systems based on spatial-mode encoding can be more resilient against intercept-resend eavesdropping attacks.
Orbital angular momentum of photons and the entanglement of Laguerre-Gaussian modes
The identification of orbital angular momentum (OAM) as a fundamental property of a beam of light nearly 25 years ago has led to an extensive body of research around this topic. The possibility that single photons can carry OAM has made this degree of freedom an ideal candidate for the investigation of complex quantum phenomena and their applications. Research in this direction has ranged from experiments on complex forms of quantum entanglement to the interaction between light and quantum states of matter. Furthermore, the use of OAM in quantum information has generated a lot of excitement, as it allows for encoding large amounts of information on a single photon. Here, we explain the intuition that led to the first quantum experiment with OAM 15 years ago. We continue by reviewing some key experiments investigating fundamental questions on photonic OAM and the first steps to applying these properties in novel quantum protocols. At the end, we identify several interesting open questions that could form the subject of future investigations with OAM. This article is part of the themed issue ‘Optical orbital angular momentum’.
Tomographic reconstruction of oxygen orbitals in lithium-rich battery materials
The electrification of heavy-duty transport and aviation will require new strategies to increase the energy density of electrode materials 1 , 2 . The use of anionic redox represents one possible approach to meeting this ambitious target. However, questions remain regarding the validity of the O 2− /O − oxygen redox paradigm, and alternative explanations for the origin of the anionic capacity have been proposed 3 , because the electronic orbitals associated with redox reactions cannot be measured by standard experiments. Here, using high-energy X-ray Compton measurements together with first-principles modelling, we show how the electronic orbital that lies at the heart of the reversible and stable anionic redox activity can be imaged and visualized, and its character and symmetry determined. We find that differential changes in the Compton profile with lithium-ion concentration are sensitive to the phase of the electronic wave function, and carry signatures of electrostatic and covalent bonding effects 4 . Our study not only provides a picture of the workings of a lithium-rich battery at the atomic scale, but also suggests pathways to improving existing battery materials and designing new ones. High-energy X-ray Compton measurements and first-principles modelling reveal how the electronic orbital responsible for the reversible anionic redox activity can be imaged and visualized, and its character and symmetry determined.
Intelligent Radiometric Calibration System for Ocean Color Satellite Sensors
To achieve the integration of multiple ocean color (OC) sensors’ radiometric calibration tasks into a single system, we have developed an intelligent on-orbit radiometric calibration system called the Generalized Radiometric Calibration Entity for Ocean Color (Grace-OC). The system features real-time data downloading capabilities and integrates three calibration methods: onboard calibration, system vicarious calibration and cross calibration, enabling intelligent selection of on-orbit radiometric calibration methods tailored to the calibration sensors. Compared to other calibration systems, we have improved the universality and efficiency of the system by establishing high-spectral aerosols and Rayleigh lookup tables (LUTs) which are verified consistency through a comparative analysis with operational LUTs releasing by National Aeronautics and Space Administration (NASA) in this paper. Building upon this foundation, we have integrated a comprehensive analysis function for calibration coefficients to automatically construct degradation models of the radiometric measurement performance, and to achieve mutual verification between different calibration methods. We applied Grace-OC to HY1C/D and verified the feasibility of the intelligent selection calibration methods and the stability of the calibration system, achieving a calibration accuracy of up to 0.5%. Simultaneously, the precision of degradation models of the radiometric measurement performance is confirmed through Grace-OC, and the on-orbit radiometric calibration task was ultimately completed within 6 minutes for each per scene. Based on the above applications, Grace-OC has demonstrated its universality for various OC sensors, as well as the stability of on-orbit radiometric calibration tasks and the efficiency of operational speed.
A statistical solution to the chaotic, non-hierarchical three-body problem
The three-body problem is arguably the oldest open question in astrophysics and has resisted a general analytic solution for centuries. Various implementations of perturbation theory provide solutions in portions of parameter space, but only where hierarchies of masses or separations exist. Numerical integrations 1 show that bound, non-hierarchical triple systems of Newtonian point particles will almost 2 always disintegrate into a single escaping star and a stable bound binary 3 , 4 , but the chaotic nature of the three-body problem 5 prevents the derivation of tractable 6 analytic formulae that deterministically map initial conditions to final outcomes. Chaos, however, also motivates the assumption of ergodicity 7 – 9 , implying that the distribution of outcomes is uniform across the accessible phase volume. Here we report a statistical solution to the non-hierarchical three-body problem that is derived using the ergodic hypothesis and that provides closed-form distributions of outcomes (for example, binary orbital elements) when given the conserved integrals of motion. We compare our outcome distributions to large ensembles of numerical three-body integrations and find good agreement, so long as we restrict ourselves to ‘resonant’ encounters 10 (the roughly 50 per cent of scatterings that undergo chaotic evolution). In analysing our scattering experiments, we identify ‘scrambles’ (periods of time in which no pairwise binaries exist) as the key dynamical state that ergodicizes a non-hierarchical triple system. The generally super-thermal distributions of survivor binary eccentricity that we predict have notable applications to many astrophysical scenarios. For example, non-hierarchical triple systems produced dynamically in globular clusters are a primary formation channel for black-hole mergers 11 – 13 , but the rates and properties 14 , 15 of the resulting gravitational waves depend on the distribution of post-disintegration eccentricities. The ergodic hypothesis is used to produce a statistical solution to the chaotic non-hierarchical three-body problem.
Photoelectronic mapping of the spin–orbit interaction of intense light fields
The interaction between a quantum particle’s spin angular momentum1 and its orbital angular momentum2 is ubiquitous in nature. In optics, the spin–orbit optical phenomenon is closely related with the light–matter interaction3 and has been of great interest4,5. With the development of laser technology6, the high-power and ultrafast light sources now serve as a crucial tool in revealing the behaviour of matter under extreme conditions. A comprehensive knowledge of the spin–orbit interaction for intense light is of utmost importance. Here, we report the in situ modulation and visualization of the optical orbital-to-spin conversion in the strong-field regime. We show that, through manipulating the morphology of femtosecond cylindrical vector vortex pulses7 by a slit, the photon’s orbital angular momentum can be controllably transformed into spin after focusing. By employing a strong-field ionization experiment, the orbital-to-spin conversion can be imaged and measured through the photoelectron momentum distributions. Such detection and consequent control of the spin–orbit dynamics of intense laser fields has implications for controlling photoelectron holography and coherent extreme-ultraviolet radiation8.Sculpting and focusing femtosecond cylindrical vector vortex pulses by a slit allows the controllable transformation of the photon’s orbital angular momentum into spin angular momentum, which can be characterized in situ by a strong-field ionization experiment.