Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
7,236
result(s) for
"outer membrane proteins"
Sort by:
A new antibiotic selectively kills Gram-negative pathogens
2019
The current need for novel antibiotics is especially acute for drug-resistant Gram-negative pathogens
1
,
2
. These microorganisms have a highly restrictive permeability barrier, which limits the penetration of most compounds
3
,
4
. As a result, the last class of antibiotics that acted against Gram-negative bacteria was developed in the 1960s
2
. We reason that useful compounds can be found in bacteria that share similar requirements for antibiotics with humans, and focus on
Photorhabdus
symbionts of entomopathogenic nematode microbiomes. Here we report a new antibiotic that we name darobactin, which was obtained using a screen of
Photorhabdus
isolates. Darobactin is coded by a silent operon with little production under laboratory conditions, and is ribosomally synthesized. Darobactin has an unusual structure with two fused rings that form post-translationally. The compound is active against important Gram-negative pathogens both in vitro and in animal models of infection. Mutants that are resistant to darobactin map to BamA, an essential chaperone and translocator that folds outer membrane proteins. Our study suggests that bacterial symbionts of animals contain antibiotics that are particularly suitable for development into therapeutics.
Bacterial symbionts of animals may contain antibiotics that are particularly suitable for development into therapeutics; one such compound, darobactin, is active against important Gram-negative pathogens both in vitro and in animal models of infection.
Journal Article
A small-molecule inhibitor of BamA impervious to efflux and the outer membrane permeability barrier
by
Si, Qian
,
Roemer, Terry
,
Bodea, Smaranda
in
Anti-Bacterial Agents - pharmacology
,
Antibacterial agents
,
Antiinfectives and antibacterials
2019
The development of new antimicrobial drugs is a priority to combat the increasing spread of multidrug-resistant bacteria. This development is especially problematic in gram-negative bacteria due to the outer membrane (OM) permeability barrier and multidrug efflux pumps. Therefore, we screened for compounds that target essential, nonredundant, surface-exposed processes in gram-negative bacteria. We identified a compound, MRL-494, that inhibits assembly of OM proteins (OMPs) by the β-barrel assembly machine (BAM complex). The BAM complex contains one essential surface-exposed protein, BamA. We constructed a bamA mutagenesis library, screened for resistance to MRL-494, and identified the mutation bamAE470K
. BamAE470K restores OMP biogenesis in the presence of MRL-494. The mutant protein has both altered conformation and activity, suggesting it could either inhibit MRL-494 binding or allow BamA to function in the presence of MRL-494. By cellular thermal shift assay (CETSA), we determined that MRL-494 stabilizes BamA and BamAE470K from thermally induced aggregation, indicating direct or proximal binding to both BamA and BamAE470K. Thus, it is the altered activity of BamAE470K responsible for resistance to MRL-494. Strikingly, MRL-494 possesses a second mechanism of action that kills gram-positive organisms. In microbes lacking an OM, MRL-494 lethally disrupts the cytoplasmic membrane. We suggest that the compound cannot disrupt the cytoplasmic membrane of gram-negative bacteria because it cannot penetrate the OM. Instead, MRL-494 inhibits OMP biogenesis from outside the OM by targeting BamA. The identification of a small molecule that inhibits OMP biogenesis at the cell surface represents a distinct class of antibacterial agents.
Journal Article
Bacterial outer membrane proteins assemble via asymmetric interactions with the BamA β-barrel
2019
The integration of β-barrel proteins into the bacterial outer membrane (OM) is catalysed by the β-barrel assembly machinery (BAM). The central BAM subunit (BamA) itself contains a β-barrel domain that is essential for OM protein biogenesis, but its mechanism of action is unknown. To elucidate its function, here we develop a method to trap a native
Escherichia coli
β-barrel protein bound stably to BamA at a late stage of assembly in vivo. Using disulfide-bond crosslinking, we find that the first β-strand of a laterally ‘open’ form of the BamA β-barrel forms a rigid interface with the C-terminal β-strand of the substrate. In contrast, the lipid-facing surface of the last two BamA β-strands forms weaker, conformationally heterogeneous interactions with the first β-strand of the substrate that likely represent intermediate assembly states. Based on our results, we propose that BamA promotes the membrane integration of partially folded β-barrels by a ‘swing’ mechanism.
The integration of β-barrel proteins into the bacterial outer membrane (OM) is catalysed by the β-barrel assembly machinery (BAM). Here authors develop a method to trap an
E. coli
β-barrel protein bound stably to BamA at a late stage of assembly in vivo which provides insights BamA mediated membrane integration.
Journal Article
Cryo-EM structures of the E. coli Ton and Tol motor complexes
2025
The Ton and Tol motor proteins use the proton gradient at the inner membrane of Gram-negative bacteria as an energy source. The generated force is transmitted through the periplasmic space to protein components associated with the outer membrane, either to maintain the outer membrane integrity for the Tol system, or to allow essential nutrients to enter the cell for Ton. We have solved the high-resolution structures of the
E. coli
TonB-ExbB-ExbD and TolA-TolQ-TolR complexes, revealing the inner membrane embedded engine parts of the Ton and Tol systems, and showing how TonB and TolA interact with the ExbBD and TolQR subcomplexes. Structural similarities between the two motor complexes suggest a common mechanism for the opening of the proton channel and the propagation of the proton motive force into movement of the TonB and TolA subunits. Because TonB and TolA bind at preferential ExbB or TolQ subunits, we propose a new mechanism of assembly of TonB and TolA with their respective ExbBD and TolQR subcomplexes and discuss its impact on the mechanism of action for the Ton and Tol systems.
The Ton and Tol systems are bacterial energy-transducing complexes that use the proton motive force at the inner membrane to exert force on outer membrane proteins. Here the authors present the high-resolution cryoEM structures of the inner membrane engine part of these two complexes.
Journal Article
The role of membrane destabilisation and protein dynamics in BAM catalysed OMP folding
by
Schiffrin, Bob
,
Carpenter-Platt, Charlotte
,
Haysom, Samuel F.
in
101/28
,
631/326/88
,
631/45/470
2021
The folding of β-barrel outer membrane proteins (OMPs) in Gram-negative bacteria is catalysed by the β-barrel assembly machinery (BAM). How lateral opening in the β-barrel of the major subunit BamA assists in OMP folding, and the contribution of membrane disruption to BAM catalysis remain unresolved. Here, we use an anti-BamA monoclonal antibody fragment (Fab1) and two disulphide-crosslinked BAM variants (lid-locked (LL), and POTRA-5-locked (P5L)) to dissect these roles. Despite being lethal in vivo, we show that all complexes catalyse folding in vitro, albeit less efficiently than wild-type BAM. CryoEM reveals that while Fab1 and BAM-P5L trap an open-barrel state, BAM-LL contains a mixture of closed and contorted, partially-open structures. Finally, all three complexes globally destabilise the lipid bilayer, while BamA does not, revealing that the BAM lipoproteins are required for this function. Together the results provide insights into the role of BAM structure and lipid dynamics in OMP folding.
The folding of outer membrane proteins (OMPs) is catalyzed by the βbarrel assembly machinery (BAM). Here, structural and functional analyses of BAM stabilized in distinct conformations elucidate the roles of lateral gate opening and interactions of BAM with the lipid bilayer in OMP assembly.
Journal Article
Monoclonal antibody targeting the β-barrel assembly machine of Escherichia coli is bactericidal
by
Garcia, Natalie K.
,
Wecksler, Aaron T.
,
Payandeh, Jian
in
Anti-Bacterial Agents - pharmacology
,
Antibiotics
,
Antibodies, Bacterial - pharmacology
2018
The folding and insertion of integral β-barrel membrane proteins into the outer membrane of Gram-negative bacteria is required for viability and bacterial pathogenesis. Unfortunately, the lack of selective and potent modulators to dissect β-barrel folding in vivo has hampered our understanding of this fundamental biological process. Here, we characterize amonoclonal antibody that selectively inhibits an essential component of the Escherichia coli β-barrel assembly machine, BamA. In the absence of complement or other immune factors, the unmodified antibody MAB1 demonstrates bactericidal activity against an E. coli strain with truncated LPS. Direct binding of MAB1 to an extracellular BamA epitope inhibits its β-barrel folding activity, induces periplasmic stress, disrupts outer membrane integrity, and kills bacteria. Notably, resistance to MAB1-mediated killing reveals a link between outermembrane fluidity and protein folding by BamA in vivo, underscoring the utility of this antibody for studying β-barrel membrane protein folding within a living cell. Identification of this BamA antagonist highlights the potential for new mechanisms of antibiotics to inhibit Gram-negative bacterial growth by targeting extracellular epitopes.
Journal Article
Bacterial outer membrane vesicles suppress tumor by interferon-γ-mediated antitumor response
by
Dinh, Nhung Thi Hong
,
Choi, Seng Jin
,
Kim, Oh Youn
in
631/326/41/2180
,
631/67/1059/2325
,
Acyltransferases - genetics
2017
Gram-negative bacteria actively secrete outer membrane vesicles, spherical nano-meter-sized proteolipids enriched with outer membrane proteins, to the surroundings. Outer membrane vesicles have gained wide interests as non-living complex vaccines or delivery vehicles. However, no study has used outer membrane vesicles in treating cancer thus far. Here we investigate the potential of bacterial outer membrane vesicles as therapeutic agents to treat cancer via immunotherapy. Our results show remarkable capability of bacterial outer membrane vesicles to effectively induce long-term antitumor immune responses that can fully eradicate established tumors without notable adverse effects. Moreover, systematically administered bacterial outer membrane vesicles specifically target and accumulate in the tumor tissue, and subsequently induce the production of antitumor cytokines CXCL10 and interferon-γ. This antitumor effect is interferon-γ dependent, as interferon-γ-deficient mice could not induce such outer membrane vesicle-mediated immune response. Together, our results herein demonstrate the potential of bacterial outer membrane vesicles as effective immunotherapeutic agent that can treat various cancers without apparent adverse effects.
Bacterial outer membrane vesicles (OMVs) contain immunogens but no study has yet examined their potential in treating cancer. Here, the authors demonstrate that OMVs can suppress established tumours and prevent tumour metastasis by an interferon-γ mediated antitumor response.
Journal Article
Pyridylpiperazine-based allosteric inhibitors of RND-type multidrug efflux pumps
2022
Efflux transporters of the RND family confer resistance to multiple antibiotics in Gram-negative bacteria. Here, we identify and chemically optimize pyridylpiperazine-based compounds that potentiate antibiotic activity in
E. coli
through inhibition of its primary RND transporter, AcrAB-TolC. Characterisation of resistant
E. coli
mutants and structural biology analyses indicate that the compounds bind to a unique site on the transmembrane domain of the AcrB L protomer, lined by key catalytic residues involved in proton relay. Molecular dynamics simulations suggest that the inhibitors access this binding pocket from the cytoplasm via a channel exclusively present in the AcrB L protomer. Thus, our work unveils a class of allosteric efflux-pump inhibitors that likely act by preventing the functional catalytic cycle of the RND pump.
Efflux transporters of the RND family confer resistance to multiple antibiotics in Gram-negative bacteria. Here, the authors identify pyridylpiperazine-based compounds that potentiate antibiotic activity in
E. coli
through allosteric inhibition of its primary RND transporter.
Journal Article
Structural basis of BAM-mediated outer membrane β-barrel protein assembly
2023
The outer membrane structure is common in Gram-negative bacteria, mitochondria and chloroplasts, and contains outer membrane β-barrel proteins (OMPs) that are essential interchange portals of materials
1
–
3
. All known OMPs share the antiparallel β-strand topology
4
, implicating a common evolutionary origin and conserved folding mechanism. Models have been proposed for bacterial β-barrel assembly machinery (BAM) to initiate OMP folding
5
,
6
; however, mechanisms by which BAM proceeds to complete OMP assembly remain unclear. Here we report intermediate structures of BAM assembling an OMP substrate, EspP, demonstrating sequential conformational dynamics of BAM during the late stages of OMP assembly, which is further supported by molecular dynamics simulations. Mutagenic in vitro and in vivo assembly assays reveal functional residues of BamA and EspP for barrel hybridization, closure and release. Our work provides novel insights into the common mechanism of OMP assembly.
The structural basis of the late-stage intermediate assembly of outer membrane β-barrel proteins mediated by the bacterial β-barrel assembly machinery is determined.
Journal Article
Plasticity within the barrel domain of BamA mediates a hybrid-barrel mechanism by BAM
2021
In Gram-negative bacteria, the biogenesis of β-barrel outer membrane proteins is mediated by the β-barrel assembly machinery (BAM). The mechanism employed by BAM is complex and so far- incompletely understood. Here, we report the structures of BAM in nanodiscs, prepared using polar lipids and native membranes, where we observe an outward-open state. Mutations in the barrel domain of BamA reveal that plasticity in BAM is essential, particularly along the lateral seam of the barrel domain, which is further supported by molecular dynamics simulations that show conformational dynamics in BAM are modulated by the accessory proteins. We also report the structure of BAM in complex with EspP, which reveals an early folding intermediate where EspP threads from the underside of BAM and incorporates into the barrel domain of BamA, supporting a hybrid-barrel budding mechanism in which the substrate is folded into the membrane sequentially rather than as a single unit.
The β-barrel assembly machinery (BAM) assists the folding and membrane insertion of bacterial outer membrane proteins. Here, the authors report structural characterization of BAM in lipid environment and in complex with the client protein EspP integrated into the barrel of BamA, providing insight into BAM mechanism of function.
Journal Article