Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
1,228 result(s) for "oxytocin receptors"
Sort by:
Sex-dependent regulation of social reward by oxytocin receptors in the ventral tegmental area
Social reward is critical for social relationships, and yet we know little about the characteristics of social interactions that are rewarding or the neural mechanisms underlying that reward. Here, we investigate the sex-dependent role of oxytocin receptors within the ventral tegmental area (VTA) in mediating the magnitude and valence of social reward. Operant and classical conditioning tests were used to measure social reward associated with same-sex social interactions. The effects of oxytocin, selective oxytocin receptor agonists, antagonists, and vehicle injected into the VTA on social reward was determined in male and female Syrian hamsters. The colocalization of FOS and oxytocin in sites that project to the VTA following social interaction was also determined. Females find same-sex social interactions more rewarding than males and activation of oxytocin receptors in the VTA is critical for social reward in females, as well as males. These studies provide support for the hypothesis that there is an inverted U relationship between the duration of social interaction and social reward, mediated by oxytocin; and that in females the dose–response relationship is initiated at lower doses compared with males. Same-sex social interaction is more rewarding in females than in males, and an inverted U relationship mediated by oxytocin may have a critical role in assigning positive and negative valence to social stimuli. Understanding these sex differences in social reward processing may be essential for understanding the sex differences in the prevalence of many psychiatric disorders and the development of gender-specific treatments of neuropsychiatric disorders.
Oxytocin stimulates hippocampal neurogenesis via oxytocin receptor expressed in CA3 pyramidal neurons
In addition to the regulation of social and emotional behaviors, the hypothalamic neuropeptide oxytocin has been shown to stimulate neurogenesis in adult dentate gyrus; however, the mechanisms underlying the action of oxytocin are still unclear. Taking advantage of the conditional knockout mouse model, we show here that endogenous oxytocin signaling functions in a non-cell autonomous manner to regulate survival and maturation of newly generated dentate granule cells in adult mouse hippocampus via oxytocin receptors expressed in CA3 pyramidal neurons. Through bidirectional chemogenetic manipulations, we also uncover a significant role for CA3 pyramidal neuron activity in regulating adult neurogenesis in the dentate gyrus. Retrograde neuronal tracing combined with immunocytochemistry revealed that the oxytocin neurons in the paraventricular nucleus project directly to the CA3 region of the hippocampus. Our findings reveal a critical role for oxytocin signaling in adult neurogenesis. Oxytocin (OXT) has been implicated in adult neurogenesis. Here the authors show that CA3 pyramidal cells in the adult mouse hippocampus express OXT receptors and receive inputs from hypothalamic OXT neurons; activation of OXT signaling in CA3 pyramidal cells promotes the survival and maturation of newborn neurons in the dentate gyrus in a non-cell autonomous manner.
Social reward requires coordinated activity of nucleus accumbens oxytocin and serotonin
Social behaviours in species as diverse as honey bees and humans promote group survival but often come at some cost to the individual. Although reinforcement of adaptive social interactions is ostensibly required for the evolutionary persistence of these behaviours, the neural mechanisms by which social reward is encoded by the brain are largely unknown. Here we demonstrate that in mice oxytocin acts as a social reinforcement signal within the nucleus accumbens core, where it elicits a presynaptically expressed long-term depression of excitatory synaptic transmission in medium spiny neurons. Although the nucleus accumbens receives oxytocin-receptor-containing inputs from several brain regions, genetic deletion of these receptors specifically from dorsal raphe nucleus, which provides serotonergic (5-hydroxytryptamine; 5-HT) innervation to the nucleus accumbens, abolishes the reinforcing properties of social interaction. Furthermore, oxytocin-induced synaptic plasticity requires activation of nucleus accumbens 5-HT1B receptors, the blockade of which prevents social reward. These results demonstrate that the rewarding properties of social interaction in mice require the coordinated activity of oxytocin and 5-HT in the nucleus accumbens, a mechanistic insight with implications for understanding the pathogenesis of social dysfunction in neuropsychiatric disorders such as autism. In male mice oxytocin acts as a social reinforcement signal within the nucleus accumbens (NAc) core, where it elicits a presynaptically expressed long-term depression (LTD) of excitatory synaptic transmission in medium spiny neurons; deletion of oxytocin receptors from the dorsal raphe nucleus, which provides serotonergic innervation of the NAc, and blockade of NAc serotonin 1B receptors both prevent oxytocin-induced LTD and social reward. Oxytocin rewards social interaction The neural mechanisms underlying the encoding of social reward have remained unknown, despite the need for reinforcement of adaptive social interactions in order to keep such behaviours persistent throughout evolution. Here, Robert Malenka and colleagues report that, in the mouse nucleus accumbens core, the peptide hormone oxytocin is required both for social reinforcement and a form of presynaptic long-term depression of excitatory transmission onto medium spiny neurons. This social reinforcement signal could be disrupted if oxytocin receptors were specifically deleted from inputs arriving from the dorsal raphe nucleus, the major source of serotonin in the brain, or by blocking serotonergic receptors in the nucleus accumbens. Such coordinated activity between oxytocin and serotonin systems provides a possible mechanism for encoding social reinforcement and offers targets for studying further the neural mechanisms of social dysfunction.
Elevated oxytocin levels and oxytocin receptor gene expression in female-to-male transgender individuals
Gender dysphoria (GD) is defined as a condition wherein a person’s gender identity does not align with the sex assigned at birth. Oxytocin (OXT) is an essential neuromodulator involved in cognition and socio-emotional processing. Its central effects are exerted via oxytocin receptors (OXTR). Recent studies indicated that the changes in the levels of OXTR may influence the course of some mental disorders (obsessive-compulsive disorders, schizophrenia, depression and autism). Understanding the neurobiological underpinnings of GD, particularly the involvement of OXT and OXTR, could provide beneficial insights into the mechanisms underlying this condition. In the present study, 18 Female-to-Male (FtM) transgenders, 11 FtM transgenders with self-injection of testosterone (FtM-T), and 30 control cis-females were included. Plasma levels of hormones of OXT, estradiol, progesterone, LH, FSH, free testosterone, and testosterone were evaluated with an enzyme-linked immunosorbent assay (ELISA) kit. The whole blood mRNA expression of OXTR was determined via RT-qPCR. Our results showed a statistically significant increase in OXT plasma level in FtM group compared to control group ( P  = 0.032). Also, OXTR gene expression was significantly high in FtM-T group compared to cis-females group ( P  = 0.004). This is the first demonstration of increased plasma OXT levels in FtM transgenders and OXTR gene expression in FtM-T transgenders compared to the cis-females group. The results of this study can create a new approach to understanding the underlying mechanism of gender dysphoria. Further studies are necessary to ascertain whether this contributes to or is a consequence of GD symptomatology.
Epigenetic modification of the oxytocin receptor gene influences the perception of anger and fear in the human brain
In humans, the neuropeptide oxytocin plays a critical role in social and emotional behavior. The actions of this molecule are dependent on a protein that acts as its receptor, which is encoded by the oxytocin receptor gene ( OXTR ). DNA methylation of OXTR , an epigenetic modification, directly influences gene transcription and is variable in humans. However, the impact of this variability on specific social behaviors is unknown. We hypothesized that variability in OXTR methylation impacts social perceptual processes often linked with oxytocin, such as perception of facial emotions. Using an imaging epigenetic approach, we established a relationship between OXTR methylation and neural activity in response to emotional face processing. Specifically, high levels of OXTR methylation were associated with greater amounts of activity in regions associated with face and emotion processing including amygdala, fusiform, and insula. Importantly, we found that these higher levels of OXTR methylation were also associated with decreased functional coupling of amygdala with regions involved in affect appraisal and emotion regulation. These data indicate that the human endogenous oxytocin system is involved in attenuation of the fear response, corroborating research implicating intranasal oxytocin in the same processes. Our findings highlight the importance of including epigenetic mechanisms in the description of the endogenous oxytocin system and further support a central role for oxytocin in social cognition. This approach linking epigenetic variability with neural endophenotypes may broadly explain individual differences in phenotype including susceptibility or resilience to disease. Significance Although understanding the precise nature of oxytocin’s influence on complex human social behavior has proven difficult, increasing evidence points to an anxiolytic effect. We use an imaging epigenetic approach to further parse oxytocin’s effects by examining a biological marker within the oxytocin system, DNA methylation of the oxytocin receptor gene ( OXTR ). Importantly, this epigenetic modification directly impacts the expression of oxytocin’s receptor, which is critical for the actions of oxytocin to have an effect. We find that higher levels of OXTR methylation are associated with increased neural response and decreased functional coupling within regions supporting social perception and emotion processing. This pattern of activity may be indicative of diminished emotion regulation to negative stimuli and increased risk of pathology.
Advances in the field of intranasal oxytocin research: lessons learned and future directions for clinical research
Reports on the modulatory role of the neuropeptide oxytocin on social cognition and behavior have steadily increased over the last two decades, stimulating considerable interest in its psychiatric application. Basic and clinical research in humans primarily employs intranasal application protocols. This approach assumes that intranasal administration increases oxytocin levels in the central nervous system via a direct nose-to-brain route, which in turn acts upon centrally-located oxytocin receptors to exert its behavioral effects. However, debates have emerged on whether intranasally administered oxytocin enters the brain via the nose-to-brain route and whether this route leads to functionally relevant increases in central oxytocin levels. In this review we outline recent advances from human and animal research that provide converging evidence for functionally relevant effects of the intranasal oxytocin administration route, suggesting that direct nose-to-brain delivery underlies the behavioral effects of oxytocin on social cognition and behavior. Moreover, advances in previously debated methodological issues, such as pre-registration, reproducibility, statistical power, interpretation of non-significant results, dosage, and sex differences are discussed and integrated with suggestions for the next steps in translating intranasal oxytocin into psychiatric applications.
Social approach and social vigilance are differentially regulated by oxytocin receptors in the nucleus accumbens
Oxytocin is currently being considered as a novel therapeutic for anxiety disorders due to its ability to promote affiliative behaviors. In the nucleus accumbens (NAc) activation of oxytocin receptors (OTR) promotes social approach (time spent near an unfamiliar individual). Here, we show that stressful social experiences reduce the expression of NAc OTR mRNA, coinciding with decreases in social approach. Social stressors also increase social vigilance, characterized as orienting to an unfamiliar individual without approaching. Vigilance is a key component of behavioral inhibition, a personality trait that is a risk factor for anxiety disorders. To understand whether NAc OTR can modulate both social approach and vigilance, we use pharmacological approaches to assess the impact of activation or inhibition of NAc OTR downstream pathways on these behaviors. First, we show that in unstressed male and female California mice, inhibition of OTR by an unbiased antagonist (L-368,899) reduces social approach but does not induce social vigilance. Next, we show that infusion of Atosiban, an OTR-Gq antagonist/OTR-Gi agonist, has the same effect in unstressed females. Finally, we show that Carbetocin, a biased OTR-Gq agonist, increases social approach in stressed females while simultaneously inhibiting social vigilance. Taken together these data suggest that OTR in the NAc differentially modulate social approach and social vigilance, primarily through an OTR-Gq mechanism. Importantly, pharmacological inhibition of OTR alone is insufficient to induce vigilance in unstressed mice, suggesting that mechanisms modulating social approach may be distinct from mechanisms modulating social vigilance.
The oxytocin signaling complex reveals a molecular switch for cation dependence
Oxytocin (OT) and vasopressin (AVP) are conserved peptide signaling hormones that are critical for diverse processes including osmotic homeostasis, reproduction, lactation and social interaction. OT acts through the oxytocin receptor (OTR), a magnesium-dependent G protein-coupled receptor that is a therapeutic target for treatment of postpartum hemorrhage, dysfunctional labor and autism. However, the molecular mechanisms that underlie OTR activation by OT and the dependence on magnesium remain unknown. Here we present the wild-type active-state structure of human OTR bound to OT and miniG q/i determined by cryo-EM. The structure reveals a unique activation mechanism adopted by OTR involving both the formation of a Mg 2+ coordination complex between OT and the receptor, and disruption of transmembrane helix 7 (TM7) by OT. Our functional assays demonstrate the role of TM7 disruption and provide the mechanism of full agonism by OT and partial agonism by OT analogs. Furthermore, we find that the identity of a single cation-coordinating residue across vasopressin family receptors determines whether the receptor is cation-dependent. Collectively, these results demonstrate how the Mg 2+ -dependent OTR is activated by OT, provide essential information for structure-based drug discovery efforts and shed light on the molecular determinants of cation dependence of vasopressin family receptors throughout the animal kingdom. The cryo-EM structure and functional analyses of oxytocin bound to its receptor reveal a Mg 2+ coordination complex in the binding pocket and find that the identity of a single residue determines whether a vasopressin/oxytocin family receptor requires Mg 2+ as a cofactor.
Cinnamic acid promotes elongation of hair peg-like sprouting in hair follicle organoids via oxytocin receptor activation
Considerable global demand exists for the development of novel drugs for the treatment of alopecia. A recent report demonstrated that oxytocin promotes hair growth activity in human dermal papilla (DP) cells; however, its application in drugs or cosmetic products is challenging because rapid degradation and relatively large molecular weight prevent long-term topical administration on the scalp. Here, we examined cinnamic acid, a small molecule activator for oxytocin receptor (OXTR) expression. Treatment with cinnamic acid led to upregulation of OXTR and trichogenic gene expression in human DP cells. Furthermore, inhibition of OXTR with an antagonist, L-371,257, suppressed hair growth-related gene expression in DP cells. These findings suggest that cinnamic acid enhances the hair growth ability of DP cells via oxytocin signaling. Additionally, we tested the hair growth-promoting effects of cinnamic acid using hair follicle organoids in vitro and observed that cinnamic acid significantly promoted the growth of hair peg-like sprouting. These promising results may be useful for developing hair growth-promoting products targeting oxytocin.
Oxytocin receptors influence the development and maintenance of social behavior in zebrafish (Danio rerio)
Zebrafish are highly social teleost fish and an excellent model to study social behavior. The neuropeptide Oxytocin is associated different social behaviors as well as disorders resulting in social impairment like autism spectrum disorder. However, how Oxytocin receptor signaling affects the development and expression kinetics of social behavior is not known. In this study we investigated the role of the two oxytocin receptors, Oxtr and Oxtrl, in the development and maintenance of social preference and shoaling behavior in 2- to 8-week-old zebrafish. Using CRISPR/Cas9 mediated oxtr and oxtrl knock-out fish, we found that the development of social preference is accelerated if one of the Oxytocin receptors is knocked-out and that the knock-out fish reach significantly higher levels of social preference. Moreover, oxtr −/− fish showed impairments in the maintenance of social preference. Social isolation prior to testing led to impaired maintenance of social preference in both wild-type and oxtr and oxtrl knock-out fish. Knocking-out either of the Oxytocin receptors also led to increased group spacing and reduced polarization in a 20-fish shoal at 8 weeks post fertilization, but not at 4. These results show that the development and maintenance of social behavior is influenced by the Oxytocin receptors and that the effects are not just pro- or antisocial, but dependent on both the age and social context of the fish.