Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
2,777 result(s) for "ozonation"
Sort by:
Photocatalytic ozonation of wastewater: a review
Industrialization is inducing water pollution by pharmaceuticals, fertilizers and cosmetics. Many emerging pollutants are non-biodegradable, toxic and recalcitrant to conventional wastewater treatments, thus calling for improved remediation techniques such as advanced oxidation processes which allow complete mineralization of pollutants. Here we review advanced oxidation processes with focus on ozonation and photocatalysis for the degradation of organic and microbial contaminants in wastewaters. Ozonation efficiency is limited by ozone-resistant pollutants, whereas photocatalysis is slow due to charge recombination, yet photocatalytic ozonation overcomes these limitations. Photocatalytic ozonation indeed shows synergy indices of up to 5.8 for treating wastewaters. This resulted in faster reaction kinetics, enhanced pollutant degradation with mineralization achieved in most cases, and reduction of toxicity up to 100%. We also discuss energy requirements.
Metal ferrites nanoparticles for catalytic and photocatalytic ozonation in wastewater treatment: a review
The discharge of various pollutant-rich wastewater in large volumes without adequate treatment seriously endangers the environment. Catalytic and photocatalytic ozonation are the alternative methods to make the treated wastewater reusable. Here, we review the recent advances in metal ferrite nanoparticle catalysts, including the various preparation methods, characterisation techniques, catalytic mechanisms, and modification strategies. We discuss the current application of metal ferrites as ozone catalysts and the synergistic effect of catalytic and photocatalytic ozonation. The average pollutant removal efficiencies are 20–40% for non-catalytic ozonation, 80–98% for catalytic ozonation and 60–80% for photocatalytic ozonation using metal ferrite.
Application of Heterogeneous Catalytic Ozonation for Refractory Organics in Wastewater
Catalytic ozonation is believed to belong to advanced oxidation processes (AOPs). Over the past decades, heterogeneous catalytic ozonation has received remarkable attention as an effective process for the degradation of refractory organics in wastewater, which can overcome some disadvantages of ozonation alone. Metal oxides, metals, and metal oxides supported on oxides, minerals modified with metals, and carbon materials are widely used as catalysts in heterogeneous catalytic ozonation processes due to their excellent catalytic ability. An understanding of the application can provide theoretical support for selecting suitable catalysts aimed at different kinds of wastewater to obtain higher pollutant removal efficiency. Therefore, the main objective of this review article is to provide a summary of the accomplishments concerning catalytic ozonation to point to the major directions for choosing the catalysts in catalytic ozonation in the future.
Ozonation: an Evolving Disinfectant Technology for the Food Industry
The food processing industry is currently facing challenges in delivering safe, healthy, and high-quality food. Constant monitoring at each step of the supply chain of food is vital to resolve the issue of food contamination. To achieve this aim and to meet consumer prospects, the technologies promoting the concept of clean label food have been widely cherished. Ozonation is one such advanced technology that assists in maintaining food product quality and safety. Its manifold approach and zero-by-product production make it a promising food disinfectant technique. Ozone due to its oxidative property has been widely used in sanitizing, washing, odor removal, water treatment, and in equipment, fruits, vegetable, and meat processing disinfection. Ozonation in foods is done in such a way that no nutritional, sensory, and physicochemical characteristics are altered. In this review, an attempt is made to give an overview of the impact and contribution of ozone as a disinfectant in food processing while comparing it with conventional disinfectants and its overall application in the food industry.
Efficient hole-blocking layer-free planar halide perovskite thin-film solar cells
Efficient lead halide perovskite solar cells use hole-blocking layers to help collection of photogenerated electrons and to achieve high open-circuit voltages. Here, we report the realization of efficient perovskite solar cells grown directly on fluorine-doped tin oxide-coated substrates without using any hole-blocking layers. With ultraviolet–ozone treatment of the substrates, a planar Au/hole-transporting material/CH 3 NH 3 PbI 3- x Cl x /substrate cell processed by a solution method has achieved a power conversion efficiency of over 14% and an open-circuit voltage of 1.06 V measured under reverse voltage scan. The open-circuit voltage is as high as that of our best reference cell with a TiO 2 hole-blocking layer. Besides ultraviolet–ozone treatment, we find that involving Cl in the synthesis is another key for realizing high open-circuit voltage perovskite solar cells without hole-blocking layers. Our results suggest that TiO 2 may not be the ultimate interfacial material for achieving high-performance perovskite solar cells. Lead halide perovskite solar cells use hole-blocking layers to allow a separate collection of positive and negative charge carriers and to achieve high-operation voltages. Here, the authors demonstrate efficient lead halide perovskite solar cells that avoid using this extra layer.
The role of TiO2 and gC3N4 bimetallic catalysts in boosting antibiotic resistance gene removal through photocatalyst assisted peroxone process
Antibiotics are extensively used in human medicine, aquaculture, and animal husbandry, leading to the release of antimicrobial resistance into the environment. This contributes to the rapid spread of antibiotic-resistant genes (ARGs), posing a significant threat to human health and aquatic ecosystems. Conventional wastewater treatment methods often fail to eliminate ARGs, prompting the adoption of advanced oxidation processes (AOPs) to address this growing risk. The study investigates the efficacy of visible light-driven photocatalytic systems utilizing two catalyst types (TiO 2 -Pd/Cu and g-C 3 N 4 -Pd/Cu), with a particular emphasis on their effectiveness in eliminating bla TEM , ermB , qnrS , tetM . intl1 , 16 S rDNA and 23 S rDNA through photocatalytic ozonation and peroxone processes. Incorporating O 3 into photocatalytic processes significantly enhances target removal efficiency, with the photocatalyst-assisted peroxone process emerging as the most effective AOP. The reemergence of targeted contaminants following treatment highlights the pivotal importance of AOPs and the meticulous selection of catalysts in ensuring sustained treatment efficacy. Furthermore, Polymerase Chain Reaction-Denaturing Gradient Gel Electrophoresis (PCR-DGGE) analysis reveals challenges in eradicating GC-rich bacteria with TiO 2 and g-C 3 N 4 processes, while slight differences in Cu/Pd loadings suggest g-C 3 N 4 -based ozonation improved antibacterial effectiveness. Terminal Restriction Fragment Length Polymorphism analysis highlights the efficacy of the photocatalyst-assisted peroxone process in treating diverse samples.
Advanced Oxidation Processes for the Removal of Antibiotics from Water. An Overview
In this work, the application of advanced oxidation processes (AOPs) for the removal of antibiotics from water has been reviewed. The present concern about water has been exposed, and the main problems derived from the presence of emerging pollutants have been analyzed. Photolysis processes, ozone-based AOPs including ozonation, O3/UV, O3/H2O2, and O3/H2O2/UV, hydrogen peroxide-based methods (i.e., H2O2/UV, Fenton, Fenton-like, hetero-Fenton, and photo-Fenton), heterogeneous photocatalysis (TiO2/UV and TiO2/H2O2/UV systems), and sonochemical and electrooxidative AOPs have been reviewed. The main challenges and prospects of AOPs, as well as some recommendations for the improvement of AOPs aimed at the removal of antibiotics from wastewaters, are pointed out.
Heterogeneous Catalysis of Ozone Using Iron–Manganese Silicate for Degradation of Acrylic Acid
Iron–manganese silicate (IMS) was synthesized by chemical coprecipitation and used as a catalyst for ozonating acrylic acid (AA) in semicontinuous flow mode. The Fe-O-Mn bond, Fe-Si, and Mn-Si binary oxide were formed in IMS on the basis of the results of XRD, FTIR, and XPS analysis. The removal efficiency of AA was highest in the IMS catalytic ozonation processes (98.9% in 15 min) compared with ozonation alone (62.7%), iron silicate (IS) catalytic ozonation (95.6%), and manganese silicate catalytic ozonation (94.8%). Meanwhile, the removal efficiencies of total organic carbon (TOC) were also improved in the IMS catalytic ozonation processes. The IMS showed high stability and ozone utilization. Additionally, H2O2 was formed in the process of IMS catalytic ozonation. Electron paramagnetic resonance (EPR) analysis and radical scavenger experiments confirmed that hydroxyl radicals (•OH) were the dominant oxidants. Cl−, HCO3−, PO43−, Ca2+, and Mg2+ in aqueous solution could adversely affect AA degradation. In the IMS catalytic ozonation of AA, the surface hydroxyl groups and Lewis acid sites played an important role.
Degradation of Rhodamine B by MnFe-LDH/PMS/O 3 three-phase catalytic system: performance, mechanism and ecotoxicity studies
● A three-phase catalytic system was constructed to degrade typical dyes RhB. ● RhB could be effectively removed at the pH range of 3–9 within 10 min. ● The synergistic mechanism of MnFe-LDH catalysis on PMS/O 3 was investigated. ● The degradation pathways and ecotoxicity of the intermediates of RhB were proposed. This study developed a novel MnFe-LDH/PMS/O 3 three-phase catalytic system to degrade the organic dye RhB, which was used to address the drawbacks of persulfate oxidation and ozonation techniques. The structure, ionic and elemental composition, specific surface area, and magnetic properties of the LDHs were investigated using a variety of physicochemical characterization tools. The results showed that MnFe-LDH had a large specific surface area, a rich crystalline phase composition, and a functional group structure. The RhB degradation rate of MnFe-LDH/PMS/O 3 was 0.34 min −1, which was much higher than that of other comparative systems. RhB could be completely degraded in 10 min after optimization and had a significant effect on TOC removal. The system was found to be effective over a wide pH range. Common anions were largely unaffected and humic acid acted as an inhibitor. At the same time, the system had generally effective degradation performance for different dyes. Combined with quenching experiments and EPR, it was found that SO 4 •−, •OH, O 2 •−, and 1O 2 all participated in the reaction, and •OH contributed more. The degradation pathway of RhB was derived by LC-MS, and the T.E.S.T. evaluation found that the toxicity of the intermediate product was significantly reduced. Finally, the stability and availability of LDHs were verified using cycling experiments and metal ion leaching. This work provides a theoretical basis and data support for the synergistic catalysis of PMS/O 3 and the deep treatment of dye wastewater.
Potable Water Treatment in a Batch Reactor Benefited by Combined Filtration and Catalytic Ozonation
Due to continuous contamination of groundwater by anthropogenic activities, potable water fetches numerous pollutants such as pathogens, pharmaceuticals, and heavy metals, with these being severe health hazards. The main aim of the current study was to develop a hybrid unit based on catalytic ozonation and the filtration process to effectively remove the contaminants in drinking water. To the best of our knowledge, in the current study, the Fe-Zeolite 4A (Fe-Z4A)/O3 process followed by filtration involving rice husk and activated carbons were studied for the first time in order to treat drinking water. In the current investigation, fecal coliforms, arsenic, pharmaceuticals, turbidity, and TDS removal were investigated in a novel hybrid reactor. The results showed 100%, 45%, 40%, 70%, and 95% fecal coliform, arsenic, TDS, paracetamol, and turbidity removal efficiency, respectively. The results further indicated that all the studied drinking water samples followed WHO guidelines and NEQS for drinking water quality after the proposed treatment. Therefore, it is concluded that the proposed hybrid process implies a single unit is highly efficient for drinking water treatment. The designed novel hybrid reactor treatment can be scaled up in the future for household or commercial use.