Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
28
result(s) for
"para-Aminobenzoates - blood"
Sort by:
Pre-symptomatic Caspase-1 inhibitor delays cognitive decline in a mouse model of Alzheimer disease and aging
2020
Early therapeutic interventions are essential to prevent Alzheimer Disease (AD). The association of several inflammation-related genetic markers with AD and the early activation of pro-inflammatory pathways in AD suggest inflammation as a plausible therapeutic target. Inflammatory Caspase-1 has a significant impact on AD-like pathophysiology and Caspase-1 inhibitor, VX-765, reverses cognitive deficits in AD mouse models. Here, a one-month pre-symptomatic treatment of Swedish/Indiana mutant amyloid precursor protein (APP
Sw/Ind
) J20 and wild-type mice with VX-765 delays both APP
Sw/Ind
- and age-induced episodic and spatial memory deficits. VX-765 delays inflammation without considerably affecting soluble and aggregated amyloid beta peptide (Aβ) levels. Episodic memory scores correlate negatively with microglial activation. These results suggest that Caspase-1-mediated inflammation occurs early in the disease and raise hope that VX-765, a previously Food and Drug Administration-approved drug for human CNS clinical trials, may be a useful drug to prevent the onset of cognitive deficits and brain inflammation in AD.
Previous work showed that the caspase 1 inhibitor VX-765 rescued cognitive deficits in the J20 mouse model of Alzheimer’s disease, and this may occur via reduced inflammation. Here the authors show that administration of the drug prior to onset of cognitive deficits and pathology in mice delays the onset of deficits.
Journal Article
Phase 1 summary of plasma concentration–QTc analysis for idasanutlin, an MDM2 antagonist, in patients with advanced solid tumors and AML
by
Lin-Chi, Chen
,
Blotner, Steven
,
Ferlini, Cristiano
in
Cardiac arrhythmia
,
Genotoxicity
,
MDM2 protein
2018
PurposeIdasanutlin, a selective small-molecule MDM2 antagonist in phase 3 testing for refractory/relapsed AML, is a non-genotoxic oral p53 activator. The aim of this analysis is to examine the potential of idasanutlin to prolong the corrected QT (QTc) interval by evaluating the relationship between plasma idasanutlin concentration and QTc interval.MethodIntensive plasma concentration QTc interval data were collected at the same timepoints, from three idasanutlin (RO5503781) phase 1 studies in patients with solid tumors and AML. QTc data in absolute values and changes from baseline (Δ) were analyzed for a potential association with plasma idasanutlin concentrations with a linear mixed effect model. Categorical analysis was also performed.ResultsA total of 282 patients were exposed to idasanutlin and had at least one observation of QTc and idasanutlin plasma concentration. There was no apparent increase of QTcF or ΔQTcF in a wide idasanutlin plasma concentration range, even at concentrations exceeding the exposure matching the dose adopted in the ongoing phase 3 study (300-mg BID). Categorical analysis did not detect a potential signal of QT prolongation.ConclusionThe concentration–QTc analysis indicates that idasanutlin does not prolong the QT interval within the targeted concentration range currently in consideration for clinical development.
Journal Article
Effect of the inhaled PDE4 inhibitor CHF6001 on biomarkers of inflammation in COPD
by
Kornmann, Oliver
,
Watz, Henrik
,
Leaker, Brian
in
Aged
,
Biological markers
,
Biomarkers - blood
2019
Background
CHF6001 is a novel inhaled phosphodiesterase-4 inhibitor. This Phase IIa study assessed the effects of CHF6001 on markers of inflammation in induced sputum and blood in patients with chronic obstructive pulmonary disease (COPD).
Methods
This was a multicentre, three-period (each 32 days), three-way, placebo-controlled, double-blind, complete-block crossover study. Eligible patients had COPD, chronic bronchitis, and were receiving inhaled triple therapy for ≥2 months. Patients received CHF6001 800 or 1600 μg, or matching placebo twice daily via multi-dose dry-powder inhaler (NEXThaler). Induced sputum was collected pre-dose on Day 1, and post-dose on Days 20, 26 and 32. Blood was sampled pre-dose on Day 1, and pre- and post-dose on Day 32.
Results
Of 61 randomised patients, 54 (88.5%) completed the study. There were no significant differences between groups for overall sputum cell count, or absolute numbers of neutrophils, eosinophils or lymphocytes. CHF6001 800 μg significantly decreased the absolute number and percentage of macrophages vs placebo.
In sputum, compared with placebo both CHF6001 doses significantly decreased leukotriene B4, C-X-C motif chemokine ligand 8, macrophage inflammatory protein 1β, matrix metalloproteinase 9, and tumour necrosis factor α (TNFα). In blood, both CHF6001 doses significantly decreased serum surfactant protein D vs placebo. CHF6001 1600 μg significantly decreased TNFα ex-vivo (after incubation with lipopolysaccharide).
Conclusion
The data from this study show that CHF6001 inhaled twice daily has anti-inflammatory effects in the lungs of patients with COPD already treated with triple inhaled therapy.
Trial registration
The study is registered on ClinicalTrials.gov (
NCT03004417
).
Journal Article
MIRROS: a randomized, placebo-controlled, Phase III trial of cytarabine ± idasanutlin in relapsed or refractory acute myeloid leukemia
by
Konopleva, Marina Y
,
Park, Aaron
,
Gamel, Katia
in
acute myeloid leukemia
,
Adolescent
,
Antineoplastic Combined Chemotherapy Protocols - therapeutic use
2020
Patients with refractory or relapsed acute myeloid leukemia (R/R AML) have a poor prognosis, with a high unmet medical need. Idasanutlin is a small-molecule inhibitor of MDM2, a negative regulator of tumor suppressor p53. By preventing the p53–MDM2 interaction, idasanutlin allows for p53 activation, particularly in patients with
wild-type (WT) status. MIRROS (NCT02545283) is a randomized Phase III trial evaluating idasanutlin + cytarabine versus placebo + cytarabine in R/R AML. The primary end point is overall survival in the
-WT population. Secondary end points include complete remission rate (cycle 1), overall remission rate (cycle 1) and event-free survival in the
-WT population. MIRROS has an innovative design that integrates a stringent interim analysis for futility; continuation criteria were met in mid-2017 and accrual is ongoing.
NCT02545283
Journal Article
Caspase-1 inhibition alleviates cognitive impairment and neuropathology in an Alzheimer’s disease mouse model
2018
Alzheimer's disease (AD) is an intractable progressive neurodegenerative disease characterized by cognitive decline and dementia. An inflammatory neurodegenerative pathway, involving Caspase-1 activation, is associated with human age-dependent cognitive impairment and several classical AD brain pathologies. Here, we show that the nontoxic and blood–brain barrier permeable small molecule Caspase-1 inhibitor VX-765 dose-dependently reverses episodic and spatial memory impairment, and hyperactivity in the J20 mouse model of AD. Cessation of VX-765 results in the reappearance of memory deficits in the mice after 1 month and recommencement of treatment re-establishes normal cognition. VX-765 prevents progressive amyloid beta peptide deposition, reverses brain inflammation, and normalizes synaptophysin protein levels in mouse hippocampus. Consistent with these findings, Caspase-1 null J20 mice are protected from episodic and spatial memory deficits, neuroinflammation and Aβ accumulation. These results provide in vivo proof of concept for Caspase-1 inhibition against AD cognitive deficits and pathologies.
Caspase-1, activated by stress in immune cells and in CNS human neurons, may contribute to neuronal degeneration. Here, the authors investigate the therapeutic potential of a Caspase-1 inhibitor in a mouse model of Alzheimer’s disease.
Journal Article
NLRP3 Inflammasome Mediates Chronic Mild Stress-Induced Depression in Mice via Neuroinflammation
by
Wu, Teng-Yun
,
Jiang, Chun-Lei
,
Zhang, Ting
in
Animals
,
Anti-Inflammatory Agents, Non-Steroidal - pharmacology
,
Antidepressive Agents - pharmacology
2015
Background:Evidence from both clinical and experimental research indicates that the immune-brain interaction plays a pivotal role in the pathophysiology of depression. A multi-protein complex of the innate immune system, the NLRP3 inflammasome regulates cleavage and secretion of proinflammatory cytokine interleukin-1β. The inflammasome detects various pathogen-associated molecule patterns and damage-associated molecule patterns, which then leads to a series of immune-inflammatory reactions.Methods:To explore the role of inflammasome activation in the underlying biological mechanisms of depression, we established a mouse model of depression with unpredictable chronic mild stress.Results:Mice subjected to chronic mild stress for 4 weeks had significantly higher serum corticosterone levels, serum interleukin-1β levels, and hippocampal active interleukin-1β protein levels. They also displayed depressive-like symptoms, including decreased sucrose preference and increased immobility time. Moreover, the hippocampi of chronic mild stress-exposed mice had significantly higher activity of caspase-1, which accompanied by higher protein levels of NLRP3 and the apoptotic speck-containing protein with a card. Pretreatment with the NLRP3 inflammasome inhibitor VX-765 decreased serum and hippocampal levels of interleukin-1β protein and significantly moderated the depressive-like behaviors induced by chronic mild stress.Conclusions:These data suggest the NLRP3 inflammasome mediates stress-induced depression via immune activation. Future procedures targeting the NLRP3 inflammasome may have promising effects in the prevention and treatment of depression.
Journal Article
Pyroptosis inhibition improves the symptom of acute myocardial infarction
2021
Acute myocardial infarction (AMI), the leading cause of mortality worldwide, is a rapidly developing and irreversible disease. Therefore, proper prompt intervention at the early stage of AMI is crucial for its treatment. However, the molecular features in the early stage have not been clarified. Here, we constructed mouse AMI model and profiled transcriptomes and proteomes at the early stages of AMI progress. Immune system was extensively activated at 6-h AMI. Then, pyroptosis was activated at 24-h AMI. VX-765 treatment, a pyroptosis inhibitor, significantly reduced the infarct size and improved the function of cardiomyocytes. Besides, we identified that WIPI1, specifically expressed in heart, was significantly upregulated at 1 h after AMI. Moreover,
WIPI1
expression is significantly higher in the peripheral blood of patients with AMI than healthy control. WIPI1 can serve as a potential early diagnostic biomarker for AMI. It likely decelerates AMI progress by activating autophagy pathways. These findings shed new light on gene expression dynamics in AMI progress, and present a potential early diagnostic marker and a candidate drug for clinical pre-treatment to prolong the optimal cure time.
Journal Article
VX‐765 enhances autophagy of human umbilical cord mesenchymal stem cells against stroke‐induced apoptosis and inflammatory responses via AMPK/mTOR signaling pathway
by
Gu, Lei
,
Huang, Shengwei
,
Wang, Zhenzhong
in
Alzheimer's disease
,
AMP-Activated Protein Kinase Kinases
,
Animal models
2020
Introduction To investigate the protective effect of VX‐765 on human umbilical mesenchymal stem cells (HUMSCs) in stroke and its mechanism. Materials and methods Mouse models of ischemic stroke were established using the distal middle cerebral artery occlusion (dMCAO) method. The dMCAO mice were accordingly transplanted with HUMSCs, VX‐765‐treated HUMSCs, or VX‐765 + MHY185‐treated HUMSCs. The HUMSCs were inserted with green fluorescent protein (GFP) for measurement of transplantation efficiency which was determined by immunofluorescence assay. Oxygen‐glucose deprivation (OGD) was applied to mimic ischemic environment in vitro experiments, and the HUMSCs herein were transfected with AMPK inhibitor Compound C or autophagy inhibitor 3‐MA. MTT assay was used to test the toxicity of VX‐765. TUNEL staining and ELISA were applied to measure the levels of apoptosis and inflammatory cytokines (IL‐1β, IL‐6, and IL‐10), respectively. The expressions of autophagy‐associated proteins, AMPK, and mTOR were detected by Western blotting. TTC staining was applied to reveal the infarct lesions in the brain of dMCAO mice. Results The pro‐inflammatory cytokines, TUNEL‐positive cells, and p‐mTOR were decreased while the anti‐inflammatory cytokine, autophagy‐related proteins, and p‐AMPK were increased in HUMSCs treated with VX‐765 under OGD condition. Different expression patterns were found with the above factors after transfection of 3‐MA or Compound C. The pro‐inflammatory cytokines, TUNEL‐positive cells, and infarct sections were decreased while the anti‐inflammatory cytokine and autophagy‐related proteins were increased in dMCAO mice transplanted with VX‐765‐treated HUMSCs compared to those transplanted with HUMSCs only. The autophagy was inhibited while p‐mTOR was up‐regulated after transfection of MHY. Conclusion VX‐765 protects HUMSCs against stroke‐induced apoptosis and inflammatory responses by activating autophagy via the AMPK/mTOR signaling pathway in vivo and in vitro.
Journal Article
Caspase-1 has a critical role in blood-brain barrier injury and its inhibition contributes to multifaceted repair
2020
Background
Excessive inflammation might activate and injure the blood-brain barrier (BBB), a common feature of many central nervous system (CNS) disorders. We previously developed an in vitro BBB injury model in which the organophosphate paraoxon (PX) affects the BBB endothelium by attenuating junctional protein expression leading to weakened barrier integrity. The objective of this study was to investigate the inflammatory cellular response at the BBB to elucidate critical pathways that might lead to effective treatment in CNS pathologies in which the BBB is compromised. We hypothesized that caspase-1, a core component of the inflammasome complex, might have important role in BBB function since accumulating evidence indicates its involvement in brain inflammation and pathophysiology.
Methods
An in vitro human BBB model was employed to investigate BBB functions related to inflammation, primarily adhesion and transmigration of peripheral blood mononuclear cells (PBMCs). Caspase-1 pathway was studied by measurements of its activation state and its role in PBMCs adhesion, transmigration, and BBB permeability were investigated using the specific caspase-1 inhibitor, VX-765. Expression level of adhesion and junctional molecules and the secretion of pro-inflammatory cytokines were measured in vitro and in vivo at the BBB endothelium after exposure to PX. The potential repair effect of blocking caspase-1 and downstream molecules was evaluated by immunocytochemistry, ELISA, and Nanostring technology.
Results
PX affected the BBB in vitro by elevating the expression of the adhesion molecules E-selectin and ICAM-1 leading to increased adhesion of PBMCs to endothelial monolayer, followed by elevated transendothelial-migration which was ICAM-1 and LFA-1 dependent. Blocking caspase-8 and 9 rescued the viability of the endothelial cells but not the elevated transmigration of PBMCs. Inhibition of caspase-1, on the other hand, robustly restored all of barrier insults tested including PBMCs adhesion and transmigration, permeability, and VE-cadherin protein levels. The in vitro inflammatory response induced by PX and the role of caspase-1 in BBB injury were corroborated in vivo in isolated blood vessels from hippocampi of mice exposed to PX and treated with VX-765.
Conclusions
These results shed light on the important role of caspase-1 in BBB insult in general and specifically in the inflamed endothelium, and suggest therapeutic potential for various CNS disorders, by targeting caspase-1 in the injured BBB.
Journal Article
Inhibition of Caspase-1-dependent pyroptosis alleviates myocardial ischemia/reperfusion injury during cardiopulmonary bypass (CPB) in type 2 diabetic rats
2024
Cardiovascular complications pose a significant burden in type 2 diabetes mellitus (T2DM), driven by the intricate interplay of chronic hyperglycemia, insulin resistance, and lipid metabolism disturbances. Myocardial ischemia/reperfusion (MI/R) injury during cardiopulmonary bypass (CPB) exacerbates cardiac vulnerability. This study aims to probe the role of Caspase-1-dependent pyroptosis in global ischemia/reperfusion injury among T2DM rats undergoing CPB, elucidating the mechanisms underlying heightened myocardial injury in T2DM. This study established a rat model of T2DM and compared Mean arterial pressure (MAP), heart rate (HR), and hematocrit (Hct) between T2DM and normal rats. Myocardial cell morphology, infarction area, mitochondrial ROS and caspase-1 levels, NLRP3, pro-caspase-1, caspase-1 p10, GSDMD expressions, plasma CK-MB, cTnI, IL-1β, and IL-18 levels were assessed after reperfusion in both T2DM and normal rats. The role of Caspase-1-dependent pyroptosis in myocardial ischemia/reperfusion injury during CPB in T2DM rats was examined using the caspase-1 inhibitor VX-765 and the ROS scavenger NAC. T2DM rats demonstrated impaired glucose tolerance but stable hemodynamics during CPB, while showing heightened vulnerability to MI/R injury. This was marked by substantial lipid deposition, disrupted myocardial fibers, and intensified cellular apoptosis. The activation of caspase-1-mediated pyroptosis and increased reactive oxygen species (ROS) production further contributed to tissue damage and the ensuing inflammatory response. Notably, myocardial injury was mitigated by inhibiting caspase-1 through VX-765, which also attenuated the inflammatory cascade. Likewise, NAC treatment reduced oxidative stress and partially suppressed ROS-mediated caspase-1 activation, resulting in diminished myocardial injury. This study proved that Caspase-1-dependent pyroptosis significantly contributes to the inflammation and injury stemming from global MI/R in T2DM rats under CPB, which correlate with the surplus ROS generated by oxidative stress during reperfusion.
Journal Article