Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
200 result(s) for "partial sequencing"
Sort by:
Investigation of Chikungunya virus genotype at tertiary care center in Western Maharashtra, India
Background & objectives: Chikungunya is a reemerging arbovirus infection. Laboratory diagnosis can be done by Classical test involving Rapid Immunochromatography, Enzyme-Linked Immunosorbent assay and Molecular methods. The present study was undertaken to know the genotype of the Chikungunya virus (CHICKV) among patients suspected of CHICKV and investigated by virus culture, partial sequencing, Rapid Immunochromatography, and Enzyme-linked Immunosorbent assay (ELISA). To understand different techniques used in Chikungunya diagnosis viz., virus culture, partial sequencing along with Immunochromatography and ELISA. Methods: This is a prospective, laboratory-based study at a tertiary care center. Lateral flow chromatography and ELISA was carried out on serum samples. All 50 samples were cultured and indirect Immunofluorescence was performed on positive samples at Interactive Research School for Health Affairs (IRSHA), Bharati Vidyapeeth Medical College Pune, Maharashtra, India. Virus isolates were subjected to partial sequencing for identification of genotype after confirmation by PCR. Statistical Package of Social Science (SPSS) version 22.0 software was used to calculate the Receiver operating curve (ROC) for different tests. Results: Out of 50 samples, 20 were positive by Immunochromatography, 23 by ELISA, and 3 by culture, PCR confirmed CHIKV isolates and sequencing identified genotypes as East Central South African type. Interpretation & conclusion: CHIKV culture isolates of East Central South African type lineage were predominantly found in the present study. These are also common genotypes present in Asia including India.
Molecular Epidemiology of SARS-CoV-2 in Tunisia (North Africa) through Several Successive Waves of COVID-19
Documenting the circulation dynamics of SARS-CoV-2 variants in different regions of the world is crucial for monitoring virus transmission worldwide and contributing to global efforts towards combating the pandemic. Tunisia has experienced several waves of COVID-19 with a significant number of infections and deaths. The present study provides genetic information on the different lineages of SARS-CoV-2 that circulated in Tunisia over 17 months. Lineages were assigned for 1359 samples using whole-genome sequencing, partial S gene sequencing and variant-specific real-time RT-PCR tests. Forty-eight different lineages of SARS-CoV-2 were identified, including variants of concern (VOCs), variants of interest (VOIs) and variants under monitoring (VUMs), particularly Alpha, Beta, Delta, A.27, Zeta and Eta. The first wave, limited to imported and import-related cases, was characterized by a small number of positive samples and lineages. During the second wave, a large number of lineages were detected; the third wave was marked by the predominance of the Alpha VOC, and the fourth wave was characterized by the predominance of the Delta VOC. This study adds new genomic data to the global context of COVID-19, particularly from the North African region, and highlights the importance of the timely molecular characterization of circulating strains.
Antimicrobial Susceptibility and Molecular Characterization of Escherichia coli Recovered from Milk and Related Samples
There is a rising concern about illnesses resulting from milk consumption due to contamination by pathogenic microorganisms including Escherichia coli. This study examined the occurrence and antimicrobial susceptibility of E. coli isolated from cow milk and related samples. Furthermore, partial sequencing was done to ascertain the genetic relatedness and possible cross contamination among the samples. In all, 250 samples, that is, 50 each of raw milk, cow teat, milkers’ hands, milking utensils, and fecal matter of cows, were cultured for the identification of E. coli. E. coli was detected in 101/250 samples (40.4%). Milk and fecal samples recorded the highest percentages of 68.0% and 66.0%, respectively. Forty-two (42) E. coli strains examined for antimicrobial resistance showed an overall 25.5% resistance, 15.0% intermediate resistance, and 59.5% susceptibility. The isolates had a high level of resistance to teicoplanin (100.0%), but were susceptible to chloramphenicol (95.2%) and azithromycin (92.9%). The Multiple Antibiotic Resistance (MAR) index pattern ranged from 0.1 to 0.5, and 40.5% exhibited multiple drug resistance. The E. coli strains formed 11 haplotypes, and a phylogenic tree analysis showed relatedness among the isolates in other African countries. This observation is an indication of cross contamination among the milk and its related samples.
Perfect diagnostic agreement between canine- and feline-specific parvovirus PoC antigen kits in feline panleukopenia
Timely diagnosis is essential for managing feline panleukopenia (FPL), a devastating disease of cats caused by feline parvovirus (FPV) or canine parvovirus variants (CPV-2a, -2b, -2c). To support swift clinical decisions, point-of-care (PoC) antigen kits offer frontline tools. Given their cost and availability advantages, CPV-specific kits are often used off-label in cats; however, their interchangeability with manufacturer-matched FPV-specific kits remains unverified. This study assessed the diagnostic agreement between paired canine- and feline-specific PoC parvovirus antigen tests from two manufacturers. Fifty cats (30 with acute gastroenteritis, 20 healthy) were tested using all test formats. All cats underwent PCR and sequencing for parvovirus typing. Tests from the same manufacturer showed near-perfect or perfect agreement for result interpretation (Cohen's κ: 0.919 and 1.000). This strong inter-kit concordance also extended to test line intensity (  = 0.908 and 1.000). Antigen-positive results were limited to diseased cats, mirroring the distribution of PCR positives. The latter included all the 30 cases, and were typed by sequencing as follows: 28 FPV, 1 CPV-2a, and 1 CPV-2c. All kit types detected FPV and CPV variants, and agreement within each manufacturer's paired kits was consistent across detected viral types. This preliminary evidence suggests that for two manufacturers, CPV antigen tests were non-inferior to their FPV counterparts, supporting flexible, cost-effective FPL diagnosis in cats, regardless of implicated parvovirus types.
Analysis of the partial sequencing of clbA, clbB and clbQ in Escherichia coli isolates that produce colibactin and multilocus sequence typing
Colibactin, is a cyclomodulin expressed from polyketide synthase (pk) genomic islands. These bacterial toxins interfere with the eukaryotic cell cycle and induce DNA damage. The aim of the present study was to investigate the prevalence of colibactin production among E. coli strains recovered from different infections, determine the similarity of clb nucleotide sequences, and identify genotype of isolates using multilocus sequence typing(MLST). This was a prospective, cross-sectional study conducted from January 2022 to February 2023. A total of 117 clinical isolates were obtained from various sample types collected from outpatients and inpatients recruited to the Department of Bacteriology Labs in different hospitals in Baghdad, Iraq. clbA/clbR , clbB and clbP/clbQ were detected via conventional PCR, and partial sequencing of amplicons was performed via Sanger sequencing. For select isolates, MLST genotyping was performed. The most common phylogenetic group was B2 (61/106; 57.54%). Among the E. coli strains, 27/106 (25.47%) were clb  + ve, and the most common type was clbB (13/27; 48.14%). Analysis of the partial sequencing of clb among the strains revealed high molecular similarity. Genotyping of 37 selected E. coli strains via MLST revealed 28 different genotypes. There was a high prevalence of colibactin production in phylogroup B2, and it seems that the clb  +  ve strains had conserved molecular structures. There was high genetic diversity among the strains tested.
Discovering Decolorization Potential of Triphenylmethane Dyes by Actinobacteria from Soil
This study investigates the decolorization potential of actinobacteria from soil towards toxic triphenylmethane (TPM) dyes, i.e., malachite green (MG), methyl violet (MV), crystal violet (CV), and cotton blue (CB). The actinobacterial isolates were first isolated from fresh soil samples, plated onto actinomycetes isolation agar (AIA), and both live and dead cells were prepared to evaluate their decolorization efficiency (DE). Isolates with positive decolorization activities were identified via partial sequencing of the 16S rRNA region. They were revealed as species of Nocardiopsis (N. alba), Streptomyces (S. puniceus, S. bacillaris, S. albolongus, S. acidiscabies, S. albulus, S. pratensis, S. luridiscabiei, S. rubiginosus, S. albidochromogenes), Rhodococcus (R. sovatensis), and Kitasatospora (K. albolonga). Results indicated that all 12 actinobacterial strains (live cells and dead cells) were able to decolorize TPM dyes, although with varying degree of effectiveness. Isolate N. alba (live cells) achieved the highest DE, with 97.0, 95.1, 95.8, and 83.8% (day 14) for MG, MV, CV, and CB, respectively. This was followed by live cells of S. bacillaris with 94.7, 95.1, 90.5, and 63.9% of DE for the same dyes. Live cells appeared to be more effective in decolorizing TPM dyes, suggesting the possible biosorption and biodegradation of dyes. It is concluded that soil actinobacteria tested in this study have the potential for removal of TPM dyes.
Detection of Laryngotracheitis Virus in Poultry Flocks with Respiratory Disorders in Slovenia
Infectious laryngotracheitis (ILT) is an acute, highly contagious infectious disease of the upper respiratory tract in chickens and other poultry species that causes significant economic losses in countries worldwide. Between 2017 and 2019, seven outbreaks of mild to severe respiratory disorders with high suspicion of ILT occurred in commercial and backyard poultry flocks in Slovenia. In all submissions, infection with ILT virus (ILTV) was confirmed by PCR, which is the first report of ILT in Slovenia. Circulating ILT strains were characterized by the sequence and phylogenetic analysis of two fragments of the ICP4 gene. Four strains—three detected in non-vaccinated flocks and one in a flock vaccinated against ILT—were identical or very similar to the chicken embryo–origin live virus vaccines, and the other three were closely related to Russian, Chinese, Australian, and American field strains and to tissue culture origin vaccine strains. As in other diseases, coinfections with other respiratory pathogens in confirmed ILT cases may cause a more severe condition and prolong the course of the disease. In our study, coinfections with Mycoplasma synoviae (7/7 tested flocks), infectious bronchitis virus (5/5 tested flocks), Mycoplasma gallisepticum (4/7 tested flocks), Ornithobacterium rhinotracheale (3/4 tested flocks), and avian pox virus (1/2 tested flocks) were confirmed, indicating the importance of these pathogens in the occurrence of ILT infections.
Mineral Solubilizing Rhizobacterial Strains Mediated Biostimulation of Rhodes Grass Seedlings
Minerals play a dynamic role in plant growth and development. However, most of these mineral nutrients are unavailable to plants due to their presence in fixed forms, which causes significant losses in crop production. An effective strategy to overcome this challenge is using mineral solubilizing bacteria, which can convert insoluble forms of minerals into soluble ones that plants can quickly assimilate, thus enhancing their availability in nutrient-depleted soils. The main objective of the present study was to isolate and characterize mineral solubilizing rhizobacteria and to assess their plant growth-promoting potential for Rhodes grass. Twenty-five rhizobacterial strains were isolated on a nutrient agar medium. They were characterized for solubilization of insoluble minerals (phosphate, potassium, zinc, and manganese), indole acetic acid production, enzymatic activities, and various morphological traits. The selected strains were also evaluated for their potential to promote the growth of Rhodes grass seedlings. Among tested strains, eight strains demonstrated strong qualitative and quantitative solubilization of insoluble phosphate. Strain MS2 reported the highest phosphate solubilization index, phosphate solubilization efficiency, available phosphorus concentration, and reduction in medium pH. Among tested strains, 75% were positive for zinc and manganese solubilization, and 37.5% were positive for potassium solubilization. Strain MS2 demonstrated the highest quantitative manganese solubilization, while strains MS7 and SM4 reported the highest solubilization of zinc and potassium through acidifying their respective media. The strain SM4 demonstrated the most increased IAA production in the presence and absence of L-tryptophan. The majority of strains were positive for various enzymes, including urease, catalase protease, and amylase activities. However, these strains were negative for coagulase activity except strains SM7 and MS7. Based on 16S rRNA gene sequencing, six strains, namely, SM2, SM4, SM5, MS1, MS2, and MS4, were identified as Bacillus cereus, while strains SM7 and MS7 were identified as Staphylococcus saprophyticus and Staphylococcus haemolyticus. These strains significantly improved growth attributes of Rhodes grass, such as root length, shoot length, and root and shoot fresh and dry biomasses compared to the uninoculated control group. The present study highlights the significance of mineral solubilizing and enzyme-producing rhizobacterial strains as potential bioinoculants to enhance Rhodes grass growth under mineral-deficient conditions sustainably.
Identification of strains with phenotypes similar to those of Staphylococcus aureus isolated from table chicken eggs using MALDI-TOF MS and genotyping methods
The aim of the study was to identify the affinity of 10 Staphylococcus strains isolated from table chicken eggs to specific species. Preliminary analysis performed by API ID32 Staph test identified these strains as S. aureus, but they exhibited a negative reaction in the tube coagulase test. Thus, the analysed strains were initially characterised as Staphylococcus aureus-like (SAL). Further characterisation was performed by genotypic methods, using restriction fragment length polymorphism (RFLP) of the coagulase gene (coa) and sequencing of the gene rpoB. An attempt was also made to identify the isolated Staphylococcus strains by MALDI-TOF mass spectrometry. The results indicated that none of the strains tested belonged to the species S. aureus. The rpoB sequences of five isolates showed the highest sequence similarity to S. haemolyticus, three isolates to S. chromogenes, and one isolate to S. epidermidis. One strain (SAL4) remained unidentified in this analysis. The results obtained using mass spectrometry were comparable to those based on gene sequence analysis. Strain SAL4, which could not be identified by sequencing, was identified by MALDI-TOF as Staphylococcus chromogenes.
Partial sequencing reveals the transposable element composition of Coffea genomes and provides evidence for distinct evolutionary stories
The Coffea genus, 124 described species, has a natural distribution spreading from inter-tropical Africa, to Western Indian Ocean Islands, India, Asia and up to Australasia. Two cultivated species, C. arabica and C. canephora, are intensively studied while, the breeding potential and the genome composition of all the wild species remained poorly uncharacterized. Here, we report the characterization and comparison of the highly repeated transposable elements content of 11 Coffea species representatives of the natural biogeographic distribution. A total of 994 Mb from 454 reads were produced with a genome coverage ranging between 3.2 and 15.7 %. The analyses showed that highly repeated transposable elements, mainly LTR retrotransposons (LTR-RT), represent between 32 and 53 % of Coffea genomes depending on their biogeographic location and genome size. Species from West and Central Africa (Eucoffea) contained the highest LTR-RT content but with no strong variation relative to their genome size. At the opposite, for the insular species (Mascarocoffea), a strong variation of LTR-RT was observed suggesting differential dynamics of these elements in this group. Two LTR-RT lineages, SIRE and Del were clearly differentially accumulated between African and insular species, suggesting these lineages were associated to the genome divergence of Coffea species in Africa. Altogether, the information obtained in this study improves our knowledge and brings new data on the composition, the evolution and the divergence of wild Coffea genomes.