Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
15,391 result(s) for "particle size distribution"
Sort by:
Multifractal characteristics of soil particle size distribution of abandoned homestead reclamation under different forest management modes
In this study, fast-growing poplar reclaimed from abandoned homestead in Xixian New District, Xi'an City, Shaanxi Province, was used as the research object to explore the multi-fractal characteristics of soil particle size distribution under different management modes of abandoned land (control), irrigation, fertilizer irrigation and mixed fertilizer irrigation. The results showed that the mean values of soil clay, silt and sand in abandoned land were 14.58%, 81.21% and 4.22% respectively, 14.08%, 79.92% and 5.99% under irrigation, 15.17%, 81.19% and 3.64% under fertilizer irrigation, and 16.75%, 80.20% and 3.05% in mixed fertilizer treatment. From 40 cm, with increasing soil depth, soil clay particles increase under irrigation, fertilizer irrigation, and mixed fertilizer irrigation modes. The single fractal dimension of soil particle size distribution (D) in each treatment ranges from 2.721 to 2.808. At 60-100 cm, D shows fertilizer irrigation > mixed fertilizer irrigation > irrigation > abandoned land, indicating that fertilization and irrigation can increase the fine-grained matter of deep soil particles and reduce soil roughness. Compared with abandoned land, under irrigation, fertilizer irrigation and mixed fertilizer modes the capacity dimension (D ), entropy dimension (D ), correlation dimension(D ), shape characteristics of the multifractal spectrum (Δf) and overall inhomogeneity of the soil particle size distribution (D -D ) indicate an uneven distribution of soil particle size; fractal structure characteristics of soil (D -D ) indicate a simplified soil structure, and degree of dispersion of soil particle size distribution (D /D ) indicates that soil particle size is distributed in dense areas. Pearson correlation analysis showed that D was significantly correlated with clay, sand, D -D , soil organic matter (SOM) and soil available phosphorus (SAP) (P < 0.05). Stepwise regression analysis showed that clay was the main controlling factor of D and D -D changes. The research results can provide some potential indicators for the quality evaluation of abandoned homestead reclamation.
CFD Modeling of Multi-Sized Particulate Slurry Flow through Pipe Bend
Particle size normally varies over wide ranges in any commercial transportation of solids through the pipeline. In the present study, the three-dimensional numerical modeling of the conventional 90o bend transporting multi-sized particulate slurry using granular Eulerian-Eulerian model is performed. The mixture of water and six different sizes of zinc tailing particles ranging from 37.5 µm to 575 µm are considered. The effect of variation in velocity and concentration on pressure drop and flow field of the multi-sized particulate slurry is investigated. The simulations are performed in the velocity range of 2.25 m/s to 3.5 m/s for the weighted solid concentration range of 9.82 to 44.26%. The comparison of pressure drop data from the available experimental results and the present numerical modeling with multisized particulate slurry shows maximum deviation within ±6%. Further, the suspension behavior of different size particles in the multi-sized slurry flow inside the bend is analyzed with the variation in the flow velocity and solid concentration. The particles of different size in the multi-sized slurry showed different suspension characteristics.
Effect of powder particle size distribution on the surface finish of components manufactured by laser powder bed fusion
One of the key aspects of the laser powder bed fusion (L-PBF) process is the quality of the raw powder since it affects the final properties of the manufactured parts. In this study, 13 batches of Inconel® 718 powder were analysed, all of them being specially designed for L-PBF technology and meeting similar requirements but coming from different suppliers. Therefore, these batches have certain differences in their characteristics, including the particle size distribution (PSD). This study presents the relationship between the PSD of each batch and the surface roughness obtained in the manufactured parts. For the roughness study, Sa and Sz parameters are presented; in addition, the size and frequency of the particles adhered to the surface were quantified, and an autocorrelation analysis was carried out. Furthermore, after this analysis, the parts were sandblasted in order to repeat the same analysis after removing the adhered particles from the surface. This work points to the fact that the particles adhered to the surface are the smallest particles in the powder batch, and their size affects the roughness of the final part. This means that the surface roughness is strongly related to the fraction of smaller particles within the PSD of the batch, while there is no relationship between the surface roughness and the larger particles.
Quantifying aerosol size distributions and their temporal variability in the Southern Great Plains, USA
A quality-controlled, 5-year dataset of aerosol number size distributions (particles with diameters (Dp) from 7 nm through 14 µm) was developed using observations from a scanning mobility particle sizer, aerodynamic particle sizer, and a condensation particle counter at the Department of Energy's Southern Great Plains (SGP) site. This dataset was used for two purposes. First, typical characteristics of the aerosol size distribution (number, surface area, and volume) were calculated for the SGP site, both for the entire dataset and on a seasonal basis, and size distribution lognormal fit parameters are provided. While the median size distributions generally had similar shapes (four lognormal modes) in all the seasons, there were some significant differences between seasons. These differences were most significant in the smallest particles (Dp<30 nm) and largest particles (Dp>800 nm). Second, power spectral analysis was conducted on this long-term dataset to determine key temporal cycles of total aerosol concentrations, as well as aerosol concentrations in specified size ranges. The strongest cyclic signal was associated with a diurnal cycle in total aerosol number concentrations that was driven by the number concentrations of the smallest particles (Dp<30 nm). This diurnal cycle in the smallest particles occurred in all seasons in ∼50 % of the observations, suggesting a persistent influence of new particle formation events on the number concentrations observed at the SGP site. This finding is in contrast with earlier studies that suggest new particle formation is observed primarily in the springtime at this site. The timing of peak concentrations associated with this diurnal cycle was shifted by several hours depending on the season, which was consistent with seasonal differences in insolation and boundary layer processes. Significant diurnal cycles in number concentrations were also found for particles with Dp between 140 and 800 nm, with peak concentrations occurring in the overnight hours, which were primarily associated with both nitrate and organic aerosol cycles. Weaker cyclic signals were observed for longer timescales (days to weeks) and are hypothesized to be related to the timescales of synoptic weather variability. The strongest periodic signals (3.5–5 and 7 d cycles) for these longer timescales varied depending on the season, with no cyclic signals and the lowest variability in the summer.
Hydraulic Conductivity, Grain Size Distribution (GSD) and Cement Injectability Limits Predicted of Sandy Soils Using Vipulanandan Models
In this study, permeability, particle size distribution of the sandy soils and collected data from several research studies were analyzed and modeled using Vipulanandan p–q model and the results of prediction were compared with the Fredlund and Logistic Growth models used in the literature. The Vipulanandan p–q model was modified and used to represent the particle size distribution of soils. The Vipulanandan p–q model parameters were correlated very well to various soil properties such as the diameter in the particle size distribution curve corresponding to 10%, 30%, 60%, and 90% of finer (d 10 , d 30 , d 60 , and d 90 respectively), mean particle size the diameter in the particle size distribution curve corresponding to 50% finer (d 50 ), and fines content (F%). The range of particle sizes investigated in this study was 0.14–0.94 mm, 0.075–1.76 mm, and 0.15–3.59 mm for the d 10 , d 30 , and d 60 , respectively. Also, from the Vipulanandan p–q model parameter, the permeability of the soils have been predicted successfully. A current study also had quantified the lower groutability limit based on the d 50 and the Vipulanandan p–q model parameters. The relationship between fines content and d 50 were also generalized using the Vipulanandan p–q model to quantify the upper and lower groutability limits for sandy-soils.
The influence of particle-size distribution on critical state behavior of spherical and non-spherical particle assemblies
This paper presents an investigation into the effects of particle-size distribution on the critical state behavior of granular materials using discrete element method (DEM) simulations on both spherical and non-spherical particle assemblies. A series of triaxial test DEM simulations examine the influence of particle-size distribution (PSD) and particle shape, which were independently assessed in the analyses presented. Samples were composed of particles with varying shapes characterized by overall regularity (OR) and different PSDs. The samples were subjected to the axial compression through different loading schemes: constant volume, constant mean effective stress, and constant lateral stress. All samples were sheared to large strains to ensure that a critical state was reached. Both the macroscopic and microscopic behaviors in these tests are discussed here within the framework of the anisotropic critical state theory. It is shown that both OR and PSD may affect the response of the granular assemblies in terms of the stress–strain relations, dilatancy, and critical state behaviors. For a given PSD, both the shear strength and fabric norm decrease with an increase in OR . The critical state angle of shearing resistance is highly dependent on particle shape. In terms of PSD, uniformly distributed assemblies mobilize higher shear strength and experience more dilative responses than specimens with a greater variation of particle sizes. The position of the critical state line in the e– p ′ space is also affected by PSD. However, the effects of PSD on critical strength and evolution of fabric are negligible. These findings highlight the importance of particle shape and PSD that should be included in the development of constitutive models for granular materials.
Particle Size Distributions and Extinction Coefficients of Aerosol Particles in Land Battlefield Environments
In land battlefield environments, aerosol particles can cause laser beams to undergo attenuation, thus deteriorating the operational performance of military laser devices. The particle size distribution (PSD) and extinction coefficient are key optical properties for assessing the attenuation characteristics of laser beams caused by aerosol particles. In this study, we employed the laser diffraction method to measure the PSDs of graphite smoke screen, copper powder smoke screen, iron powder smoke screen, ground dust, and soil explosion dust. We evaluated the goodness of fit of six common unimodal PSD functions and a bimodal lognormal PSD function employed for fitting these aerosol particles using the root mean square error (RMSE) and adjusted R2, and selected the optimal PSD function to evaluate their extinction coefficients in the laser wavelength range of 0.249~12 μm. The results showed that smoke screens, ground dust, and soil explosion dust exhibited particle size ranges of 0.7~50 µm, 1~400 µm, and 1.7~800 μm, respectively. The lognormal distribution had the best goodness of fit for fitting the PSDs of these aerosol particles in the six unimodal PSD functions, followed by the gamma and Rosin–Rammler distributions. For the bimodal aerosol particles with a lower span, the bimodal lognormal PSD functions exhibited the best goodness of fit. The graphite smoke screen exhibited the highest extinction coefficient, followed by the copper and iron powder smoke screens. In contrast, the ground dust and soil explosion dust exhibited the lowest extinction coefficients, reaching their minimum values at a wavelength of approximately 8.2 μm. This study provides a basis for analyzing and improving the detection and recognition performance of lasers in land battlefield environments.
Particle Size Distribution Slope Changes along the Yellow River Delta Observed from Sentinel 3A/B OLCI Images
Quantitative estimates of particle size in estuaries and shelf areas are important to understand ocean ecology and biogeochemistry. Particle size can be characterized qualitatively from satellite observations of ocean color. As a typical marginal sea, the Yellow River Delta (YRD) with the Bohai Sea experiences a complex hydrodynamic environment. Here, we attempt to quantify the particle size distribution (PSD) slope (ξ) based on its relationship with the particle backscattering exponent from Sentinel-3A/B OLCI. The PSD slope, ξ displays temporal and spatial variability in the YRD with the Bohai Sea. Its value varies between 3 and 4, and typically exceeds 5 in offshore areas. The lowest value of ξ occurs in the winter, indicating the presence of fine inorganic particles in the water, while high values are attained in the spring, when phytoplankton blooms increase the particle size. ξ decreases near the river mouth because of the large sediment-laden discharge debouching into the sea. We detected a slight increase in ξ when turbid waters were present in the period 2016–2022. Environmental factors, such as sea surface temperature, sea surface wave height, and wind, may control particle size and ξ in the long term. Inorganic suspended particle matter is derived along the YRD using the magnitude of ξ. The mean inorganic suspended particle matter area in winter approaches 23,900 km[sup.2] when ξ < 4.6. This study thoroughly characterizes variations in ξ in the YRD with the Bohai Sea and clarifies the contributions of driving factors from human activities and climate change.
Rheological Behavior of DNP/HMX Melt-Cast Explosives with Bimodal and Trimodal Particle-Size Distributions
As a matrix for melt-cast explosives, 3,4-dinitropyrazole (DNP) is a promising alternative to 2,4,6-trinitrotoluene (TNT). However, the viscosity of molten DNP is considerably greater compared with that of TNT, thus, requiring the viscosity of DNP-based melt-cast explosive suspensions to be minimized. In this paper, the apparent viscosity of a DNP/HMX (cyclotetramethylenetetranitramine) melt-cast explosive suspension is measured using a Haake Mars III rheometer. Both bimodal and trimodal particle-size distributions are used to minimize the viscosity of this explosive suspension. First, the optimal diameter ratio and mass ratio (two crucial process parameters) between coarse and fine particles are obtained from the bimodal particle-size distribution. Second, based on the optimal diameter ratio and mass ratio, trimodal particle-size distributions are used to further minimize the apparent viscosity of the DNP/HMX melt-cast explosive suspension. Finally, for either the bimodal or trimodal particle-size distribution, if the original data between the apparent viscosity and solid content are normalized, the resultant plot of the relative viscosity versus reduced solid content collapses to a single curve, and the effect of the shear rate on this curve is further investigated.
Effect of ultrasonication on the size distribution and stability of cellulose nanocrystals in suspension: an asymmetrical flow field-flow fractionation study
Cellulose nanocrystals (CNCs) are bio-based building blocks for sustainable advanced materials with prospective applications in polymer composites, emulsions, electronics, sensors, and biomedical devices. However, their high surface area-to-volume ratio promotes agglomeration, which restrains their performance in size-driven applications, thereby hindering commercial CNC utilization. In this regard, ultrasonication is commonly applied to disperse CNCs in colloidal suspensions; however, ultrasonication methodology is not yet standardized and knowledge of the effects of ultrasound treatments on CNC size distribution is scarce. The major goals of this study were attributed to targeted breakage of CNC agglomerates and clusters by ultrasound. The evolution of particle size distribution and potential de-sulfation by ultrasonication as well as the long-term stability of ultrasonicated CNC suspensions were investigated. Colloidal suspensions of sulfated CNCs were isolated from cotton α-cellulose. Effects of ultrasonication on particle size distribution were determined by asymmetrical flow field-flow fractionation (AF4) coupled with on-line multi-angle light scattering and ultraviolet spectroscopy. These results were complemented with off-line dynamic light scattering. High ultrasound energy densities facilitated cumulative dispersion of CNC clusters. Consequently, the mean rod length decreased logarithmically from 178.1 nm at an ultrasound energy input of 2 kJ g −1 CNC to 141.7 nm (− 20%) at 40 kJ g −1 CNC. Likewise, the hydrodynamic diameter of the particle collective decreased logarithmically from 94.5 to 73.5 nm (− 22%) in the same processing window. While the rod length, below which 95 wt% of the CNCs were found, decreased from 306.5 to 231.8 nm (− 24%) from 2 to 40 kJ g −1 CNC, the shape factor of the main particle fraction ranged from 1.0 to 1.1, which indicated a decreasing number of dimers and clusters in the particle collective. In summary, progressing ultrasonication caused a shift of the particle length distribution to shorter particle lengths and simultaneously induced narrowing of the distribution. The suspension’s electrical conductivity concurrently increased, which has been attributed to faster diffusion of smaller particles and exposure of previously obscured surface charges. Colloidal stability, investigated through electrical AF4 and electrophoretic light scattering, was not affected by ultrasonication and, therefore, indicates no de-sulfation by the applied ultrasound treatment. Occurrence of minor CNC agglomeration at low ultrasound energy densities over the course of 6 months suggest the effect was not unmitigatedly permanent.