Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
51 result(s) for "pediatric exoskeleton"
Sort by:
A Review of Hierarchical Control Strategies for Lower-Limb Exoskeletons in Children with Cerebral Palsy
In recent years, with the deepening research on exoskeletons for children with cerebral palsy, increasing evidence has highlighted their unique characteristics. Unlike adult exoskeletons, pediatric exoskeletons cannot be simply realized by scaling down adult designs; instead, special attention must be given to their unique training requirements. Although current studies have incorporated specific design adaptations and summarized the distinct features of these devices, a comprehensive review of control strategies remains lacking. This study adopts a structured narrative review approach, referencing the PRISMA framework to enhance transparency in the literature selection. Relevant publications were identified based on clearly defined inclusion and exclusion criteria, but no formal systematic review or meta-analysis was conducted. The exoskeleton control strategies from the 106 selected articles are classified using a hierarchical framework, dividing them into the supervision layer, action layer, and execution layer, with a further categorization into 12 specific control methods. Findings indicate that the supervision level primarily employs finite state machines and linear phase estimation, while the action level predominantly utilizes position trajectory control, torque trajectory control, and impedance control. At the execution level, closed-loop torque control and position control are commonly adopted. Overall, existing studies still face challenges in personalized adaptation, real-time control, and application scenarios. With advancements in controller hardware and the introduction of novel actuators, emerging technologies such as machine learning, virtual constraints, and sliding mode control may offer promising directions for future pediatric exoskeleton control design.
Hybrid Zero Dynamics Control for Gait Guidance of a Novel Adjustable Pediatric Lower-Limb Exoskeleton
Exoskeleton technology has undergone significant developments for the adult population but is still lacking for the pediatric population. This paper presents the design of a hip–knee exoskeleton for children 6 to 11 years old with gait abnormalities. The actuators are housed in an adjustable exoskeleton frame where the thigh part can adjust in length and the hip cradle can adjust in the medial-lateral and posterior-anterior directions concurrently. Proper control of exoskeletons to follow nominal healthy gait patterns in a time-invariant manner is important for ease of use and user acceptance. In this paper, a hybrid zero dynamics (HZD) controller was designed for gait guidance by defining the zero dynamics manifold to resemble healthy gait patterns. HZD control utilizes a time-invariant feedback controller to create dynamically stable gaits in robotic systems with hybrid models containing both discrete and continuous dynamics. The effectiveness of the controller on the novel pediatric exoskeleton was demonstrated via simulation. The presented preliminary results suggest that HZD control provides a viable method to control the pediatric exoskeleton for gait guidance.
ChMER: an exoskeleton robot with active body weight support walker based on compliant actuation for children with cerebral palsy
Lower limb exoskeleton robots for young children with cerebral palsy (CP) are crucial to support earlier rehabilitation that is more beneficial than later. For safety reasons, pediatric exoskeletons are usually equipped with body weight support (BWS) devices to help young patients maintain balance. However, existing pediatric exoskeletons tend to use stiff joint actuation and passive BWS with limited compliance. This paper proposes a novel mobile exoskeleton robot for young children (3- ∼ 6-years-old) with CP based on intrinsically compliant actuation. A compact kinematic chain that integrates an exoskeleton, an active BWS system, and a walker is proposed. Furthermore, with the actuation design optimization of the kinematic chain, the robot can walk alone stably in passive rehabilitation and provide high compliance in active rehabilitation. The exoskeleton adopts actuation similar to the quasi-direct drive paradigm to acquire high mechanical compliance and uses a secondary planetary reducer to ensure high output torque. Assistive torque control is achieved through proprioceptive sensing instead of torque sensors. The BWS system uses a series elastic actuator to accurately generate the weight support force and significantly reduce the fluctuation of the support force compared to the passive BWS. Finally, control frameworks for passive and active rehabilitation are implemented to validate the robot performance. The experimental results demonstrate that our robot can support safe and compliant rehabilitation.
Adaptive RBF neural network-computed torque control for a pediatric gait exoskeleton system: an experimental study
For pediatric rehabilitation, obtaining accurate coupled human-exoskeleton system models is challenging due to unknown model parameters caused by children’s dynamic growth and development. These factors make it difficult to establish precise and standardized models for exoskeleton control. Additionally, external disturbances, such as unpredictable movements or involuntary muscle contractions, further complicate the control process that must be addressed. This work presents the computed torque control (CTC) scheme compensated by a radial basis function neural network (RBFNN) for an uncertain lower-limb exoskeleton system. Primarily, the design, hardware architecture, and experimental procedure of a pediatric exoskeleton are briefly demonstrated. Thereafter, the proposed adaptive RBFNN-CTC (ARBFNN-CTC) is highlighted, where the adaptation of network weights depends on the Gaussian function and the Lyapunov equation. The adaptive RBFNN estimates the unknown model dynamics and compensates the CTC for the effective gait tracking of the coupled system in passive-assist mode. A Lyapunov stability is presented to ensure the convergence of error states into a significantly small domain. Finally, an experimental study with a pediatric subject (12 years) is carried out to investigate the effectiveness of the proposed control scheme. The gait tracking results show that the ARBFNN-CTC outperforms the traditional CTC by nearly 40 % over three gait cycles. Furthermore, the proposed approach’s generalizability is validated across various gait cycles, especially at 3,  10,  20, and 30 cycles. The high correlation coefficients of 0.996,  0.997, and 0.999 for the hip, knee, and ankle joints, respectively, at thirty gait cycles, highlight the potential of the ARBFNN-CTC scheme in achieving effective and consistent gait training outcomes over extended periods.
Fast terminal sliding mode control with rapid reaching law for a pediatric gait exoskeleton system
The parametric variations and external perturbations in the coupled subject-exoskeleton system delay and hinder effective gait tracking in clinical rehabilitation. This problem becomes more challenging in the case of the pediatric exoskeleton system. In this work, to address this benchmark challenge, a fast terminal sliding mode with a rapid reaching law (FTSM-RRL) control scheme is introduced for an uncertain lower-extremity exoskeleton aimed at assisting pediatric gait under different walking speeds. At first, the computer-aided design of the gait exoskeleton system is demonstrated with details of the desired gait trajectories of a male boy aged 12 years (weight: 40 kg, height: 132 cm). A fast terminal sliding mode controller is proposed with a varied exponential approaching rule to guarantee the rapid convergence of system states on the sliding manifold and then towards the origin in a finite period. After that, an upper limit criterion is involved within the reaching control law to compensate for the adverse effects of uncertainties and disturbances as a lumped parameter. Lyapunov’s theory is presented to ensure the expeditious convergence of the tracking error in the reaching and sliding phases. The proposed FTSM-RRL strategy is incorporated to obtain the desired trajectory tracking at slow, self-selected, and fast walking speeds. From numerical experiments, the proposed FTSM-RRL controller is found to be consistently effective ( > 71 % in X-direction and > 62 % in Y-direction) over the PID controller and ( > 7 % in X-direction and > 10 % in Y-direction) over the FTSM-ERL controller. In joint space, the proposed FTSM-RRL control consistently surpasses both PID and FTSM-ERL controls in tracking hip movement. While the proposed controller outperforms PID and FTSM-ERL for knee joint tracking, the extent of improvement diminishes at higher speeds. For ankle joint tracking, the proposed control exhibits substantial enhancement at slow speeds but comparatively poorer performance at self-selected and fast speeds when compared to PID control. However, FTSM-RRL consistently outperforms FTSM-ERL across all speeds for ankle joint tracking. Compared to FTSM-ERL control, the proposed FTSM-RRL control accelerates the hip and knee joint sliding surface convergence by 0.52s and 0.24s (slow walking), 0.55s and 0.33s (self-selected walking), and 0.61s and 0.09s (fast walking). The results obtained in this study ensure fast and efficient passive-assist gait training for the pediatric groups using exoskeleton technology.
Customized Pediatric Hand EXoskeleton for Activities of Daily Living (PHEX): Design, Development, and Characterization of an Innovative Finger Module
Research on pediatric hand exoskeletons remains limited compared to that on devices for adults. This paper presents the design and experimental validation of a customizable pediatric finger module, part of a hand exoskeleton tailored to individual anatomical features. The module aims to assist finger flexion in children with mild spasticity during activities of daily living. A patient-specific design methodology was applied to the case of a 12-year-old child. The finger module integrates compliant dorsal structures and cable-driven transmission with rigid anchoring elements to balance flexibility and structural stability. Different geometries and thickness values were tested to optimize comfort and quantify mechanical performance. Additive manufacturing was adopted to enable rapid prototyping and easy replacement of parts. Tensile and bending tests were conducted to determine stiffness and cable travel. Results support the feasibility of the proposed finger module, offering empirical data for selection and sizing of the actuation system and paving the way for the advancement of new modular pediatric devices.
Design and Control of a Single-Leg Exoskeleton with Gravity Compensation for Children with Unilateral Cerebral Palsy
Children with cerebral palsy (CP) experience reduced quality of life due to limited mobility and independence. Recent studies have shown that lower-limb exoskeletons (LLEs) have significant potential to improve the walking ability of children with CP. However, the number of prototyped LLEs for children with CP is very limited, while no single-leg exoskeleton (SLE) has been developed specifically for children with CP. This study aims to fill this gap by designing the first size-adjustable SLE for children with CP aged 8 to 12, covering Gross Motor Function Classification System (GMFCS) levels I to IV. The exoskeleton incorporates three active joints at the hip, knee, and ankle, actuated by brushless DC motors and harmonic drive gears. Individuals with CP have higher metabolic consumption than their typically developed (TD) peers, with gravity being a significant contributing factor. To address this, the study designed a model-based gravity-compensator impedance controller for the SLE. A dynamic model of user and exoskeleton interaction based on the Euler–Lagrange formulation and following Denavit–Hartenberg rules was derived and validated in Simscape™ and Simulink® with remarkable precision. Additionally, a novel systematic simplification method was developed to facilitate dynamic modelling. The simulation results demonstrate that the controlled SLE can improve the walking functionality of children with CP, enabling them to follow predefined target trajectories with high accuracy.
Effects of ATLAS 2030 gait exoskeleton on strength and range of motion in children with spinal muscular atrophy II: a case series
Background Children with spinal muscular atrophy (SMA) present muscle weakness and atrophy that results in a number of complications affecting their mobility, hindering their independence and the development of activities of daily living. Walking has well-recognized physiological and functional benefits. The ATLAS 2030 exoskeleton is a paediatric device that allows gait rehabilitation in children with either neurological or neuromuscular pathologies with gait disorders. The purpose is to assess the effects in range of motion (ROM) and maximal isometric strength in hips, knees and ankles of children with SMA type II after the use of ATLAS 2030 exoskeleton. Methods Three children (mean age 5.7 ± 0.6) received nine sessions bi-weekly of 60 min with ATLAS 2030. ROM was assessed by goniometry and strength by hand-held dynamometer. All modes of use of the exoskeleton were tested: stand up and sit down, forward and backward walking, and gait in automatic and active-assisted modes. In addition, different activities were performed during the gait session. A descriptive analysis of all variables was carried out. Results The average time of use was 53.5 ± 12.0 min in all sessions, and all participants were able to carry out all the proposed activities as well as to complete the study. Regarding isometric strength, all the measurements increased compared to the initial state, obtaining the greatest improvements for the hip flexors (60.2%) and extensors muscles (48.0%). The ROM increased 12.6% in hip and 34.1% in the ankle after the study, while knee ROM remained stable after the study. Conclusion Improvements were showed in ROM and maximal isometric strength in hips, knees and ankles after using ATLAS 2030 paediatric gait exoskeleton in all three children. This research could serve as a preliminary support for future clinical integration of ATLAS 2030 as a part of a long-term rehabilitation of children with SMA. Trial registration : The approval was obtained (reference 47/370329.9/19) by Comunidad de Madrid Regional Research Ethics Committee with Medical Products and the clinical trial has been registered on Clinical Trials.gov: NCT04837157.
Robotic devices for paediatric rehabilitation: a review of design features
Children with physical disabilities often have limited performance in daily activities, hindering their physical development, social development and mental health. Therefore, rehabilitation is essential to mitigate the adverse effects of the different causes of physical disabilities and improve independence and quality of life. In the last decade, robotic rehabilitation has shown the potential to augment traditional physical rehabilitation. However, to date, most robotic rehabilitation devices are designed for adult patients who differ in their needs compared to paediatric patients, limiting the devices’ potential because the paediatric patients’ needs are not adequately considered. With this in mind, the current work reviews the existing literature on robotic rehabilitation for children with physical disabilities, intending to summarise how the rehabilitation robots could fulfil children’s needs and inspire researchers to develop new devices. A literature search was conducted utilising the Web of Science, PubMed and Scopus databases. Based on the inclusion–exclusion criteria, 206 publications were included, and 58 robotic devices used by children with a physical disability were identified. Different design factors and the treated conditions using robotic technology were compared. Through the analyses, it was identified that weight, safety, operability and motivation were crucial factors to the successful design of devices for children. The majority of the current devices were used for lower limb rehabilitation. Neurological disorders, in particular cerebral palsy, were the most common conditions for which devices were designed. By far, the most common actuator was the electric motor. Usually, the devices present more than one training strategy being the assistive strategy the most used. The admittance/impedance method is the most popular to interface the robot with the children. Currently, there is a trend on developing exoskeletons, as they can assist children with daily life activities outside of the rehabilitation setting, propitiating a wider adoption of the technology. With this shift in focus, it appears likely that new technologies to actuate the system (e.g. serial elastic actuators) and to detect the intention (e.g. physiological signals) of children as they go about their daily activities will be required.
A randomized cross-over study protocol to evaluate long-term gait training with a pediatric robotic exoskeleton outside the clinical setting in children with movement disorders
Individuals with neuromuscular disorders display a combination of motor control deficits and lower limb weakness contributing to knee extension deficiency characterized by exaggerated stance phase knee flexion. There is a lack of evidence for long-term improvement of knee extension deficiency with currently available clinical treatment programs. Our previous work testing a wearable robotic exoskeleton with precisely timed assistive torque applied at the knee showed immediate increases in knee extension during walking for children with cerebral palsy, which continued to improve over an acute practice period. When we applied interleaved assistance and resistance to knee extension, we observed improvements in knee extension and increased muscle activation indicating the potential for muscle strengthening when used over time. There is a need for additional, high-quality trials to assess the impact of dosage, intensity and volume of training necessary to see persistent improvement in lower limb function for these patient populations. This randomized crossover study (ClinicalTrials.gov: NCT05726591) was designed to determine whether 12 weeks of overground gait training with a robotic exoskeleton outside of the clinical setting, following an initial in clinic accommodation period, has a beneficial effect on walking ability, muscle activity and overall motor function. Participants will be randomized to either complete the exoskeleton intervention or continue their standard therapy for 12 weeks first, followed by a crossover to the other study component. The primary outcome measure is change in peak knee extension angle during walking; secondary outcome measures include gait speed, strength, and validated clinical scales of motor function and mobility. Assessments will be completed before and after the intervention and at 6 weeks post-intervention, and safety and compliance will be monitored throughout. We hypothesize that the 12-week exoskeleton intervention outside the clinical setting will show greater improvements in study outcome measures than the standard therapy.