Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Language
      Language
      Clear All
      Language
  • Subject
      Subject
      Clear All
      Subject
  • Item Type
      Item Type
      Clear All
      Item Type
  • Discipline
      Discipline
      Clear All
      Discipline
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
9,125 result(s) for "pedigree analysis"
Sort by:
Coat color inheritance in American mink
Understanding the genetic mechanisms underlying coat color inheritance has always been intriguing irrespective of the animal species including American mink (Neogale vison). The study of color inheritance in American mink is imperative since fur color is a deterministic factor for the success of mink industry. However, there have been no studies during the past few decades using in-depth pedigree for analyzing the inheritance pattern of colors in American mink. In this study, we analyzed the pedigree of 23,282 mink extending up to 16 generations. All animals that were raised at the Canadian Center for Fur Animal Research (CCFAR) from 2003 to 2021 were used in this study. We utilized the Mendelian ratio and Chi-square test to investigate the inheritance of Dark (9,100), Pastel (5,161), Demi (4,312), and Mahogany (3,358) colors in American mink. The Mendelian inheritance ratios of 1:1 and 3:1 indicated heterozygous allelic pairs responsible for all studied colors. Mating sire and dam of the same color resulted in the production of offspring with the same color most of the time. Overall, the results suggested that color inheritance was complex and subjected to a high degree of diversity in American mink as the genes responsible for all four colors were found to be heterozygous.
Genetic Contributions of Genes on Sex Chromosomes and Mitochondrial DNA in a Pedigreed Population
The genetic contribution with respect to autosomal genes has been widely used to evaluate the genetic diversity of a target population. Here, we developed a method to calculate the genetic contribution with respect to genes on sex chromosomes and mitochondrial DNA through pedigree analysis. To demonstrate the performance, we applied the methods for calculating genetic contributions to example pedigree data. To verify the results of genetic contribution calculations, we performed gene-dropping simulations mimicking flows of genes on autosomes, X and Y chromosomes, and mitochondrial DNA, and then compared the results from the simulation with the corresponding genetic contributions. To investigate the effect of pedigree error, we compared the results of genetic contribution calculations using pedigree data with and without errors. The results of gene-dropping simulation showed good agreement with the results of the genetic contribution calculation. The effect of pedigree errors on the calculation of genetic contribution depended on the error rate. Since the patterns of the genetic contributions of such genes might be different from those on autosomes, the novel approach could provide new information on the genetic composition of populations. The results are expected to contribute to the development of methods for sustainable breeding and population management.
Integrating genomics and multiplatform metabolomics enables metabolite quantitative trait loci detection in breeding-relevant apple germplasm
• Apple (Malus × domestica) has commercial and nutritional value, but breeding constraints of tree crops limit varietal improvement. Marker-assisted selection minimises these drawbacks, but breeders lack applications for targeting fruit phytochemicals. To understand genotype–phytochemical associations in apples, we have developed a high-throughput integration strategy for genomic and multiplatform metabolomics data. • Here, 124 apple genotypes, including members of three pedigree-connected breeding families alongside diverse cultivars and wild selections, were genotyped and phenotyped. Metabolite genome-wide association studies (mGWAS) were conducted with c. 10 000 single nucleotide polymorphisms and phenotypic data acquired via LC–MS and ¹H NMR untargeted metabolomics. Putative metabolite quantitative trait loci (mQTL) were then validated via pedigree-based analyses (PBA). • Using our developed method, 519, 726 and 177 putative mQTL were detected in LC–MS positive and negative ionisation modes, and NMR, respectively. mQTL were indicated on each chromosome, with hotspots on linkage groups 16 and 17. A chlorogenic acid mQTL was discovered on chromosome 17 via mGWAS and validated with a two-step PBA, enabling discovery of novel candidate gene–metabolite relationships. • Complementary data from three metabolomics approaches and dual genomics analyses increased confidence in validity of compound annotation and mQTL detection. Our platform demonstrates the utility of multiomic integration to advance data-driven, phytochemical-based plant breeding.
py_(p)ed_(s)im: a flexible forward pedigree and genetic simulator for complex family pedigree analysis
Large-scale family pedigrees are commonly used across medical, evolutionary, and forensic genetics. These pedigrees are tools for identifying genetic disorders, tracking evolutionary patterns, and establishing familial relationships via forensic genetic identification. However, there is a lack of software to accurately simulate different pedigree structures along with genomes corresponding to those individuals in a family pedigree. This limits simulation-based evaluations of methods that use pedigrees. We have developed a python command-line-based tool called py_ped_sim that facilitates the simulation of pedigree structures and the genomes of individuals in a pedigree. py_ped_sim represents pedigrees as directed acyclic graphs, enabling conversion between standard pedigree formats and integration with the forward population genetic simulator, SLiM. Notably, py_ped_sim allows the simulation of varying numbers of offspring for a set of parents, with the capacity to shift the distribution of sibship sizes over generations. We additionally add simulations for events of misattributed paternity, which offers a way to simulate half-sibling relationships, and simulations to extend the breadth of a family pedigree. We validated the accuracy of both our genome simulator and pedigree simulator. We show that we can simulate genomes onto family pedigrees with levels of expected kinship. py_ped_sim is a user-friendly and open-source solution for simulating pedigree structures and conducting pedigree genome simulations. It empowers medical, forensic, and evolutionary genetics researchers to gain deeper insights into the dynamics of genetic inheritance and relatedness within families.
py_(p)ed_(s)im: a flexible forward pedigree and genetic simulator for complex family pedigree analysis
Large-scale family pedigrees are commonly used across medical, evolutionary, and forensic genetics. These pedigrees are tools for identifying genetic disorders, tracking evolutionary patterns, and establishing familial relationships via forensic genetic identification. However, there is a lack of software to accurately simulate different pedigree structures along with genomes corresponding to those individuals in a family pedigree. This limits simulation-based evaluations of methods that use pedigrees. We have developed a python command-line-based tool called py_ped_sim that facilitates the simulation of pedigree structures and the genomes of individuals in a pedigree. py_ped_sim represents pedigrees as directed acyclic graphs, enabling conversion between standard pedigree formats and integration with the forward population genetic simulator, SLiM. Notably, py_ped_sim allows the simulation of varying numbers of offspring for a set of parents, with the capacity to shift the distribution of sibship sizes over generations. We additionally add simulations for events of misattributed paternity, which offers a way to simulate half-sibling relationships, and simulations to extend the breadth of a family pedigree. We validated the accuracy of both our genome simulator and pedigree simulator. We show that we can simulate genomes onto family pedigrees with levels of expected kinship. py_ped_sim is a user-friendly and open-source solution for simulating pedigree structures and conducting pedigree genome simulations. It empowers medical, forensic, and evolutionary genetics researchers to gain deeper insights into the dynamics of genetic inheritance and relatedness within families.
Assessing different metrics of pedigree and genomic inbreeding and inbreeding effect on growth, fertility, and feed efficiency traits in a closed-herd Nellore cattle population
The selection of individuals based on their predicted breeding values and mating of related individuals can increase the proportion of identical-by-descent alleles. In this context, the objectives of this study were to estimate inbreeding coefficients based on alternative metrics and data sources such as pedigree (FPED), hybrid genomic relationship matrix H (FH), and ROH of different length (FROH); and calculate Pearson correlations between the different metrics in a closed Nellore cattle population selected for body weight adjusted to 378 days of age (W378). In addition to total FROH (all classes) coefficients were also estimated based on the size class of the ROH segments: FROH1 (1-2 Mb), FROH2 (2-4 Mb), FROH3 (4-8 Mb), FROH4 (8-16 Mb), and FROH5 (> 16 Mb), and for each chromosome (FROH_CHR). Furthermore, we assessed the effect of each inbreeding metric on birth weight (BW), body weights adjusted to 210 (W210) and W378, scrotal circumference (SC), and residual feed intake (RFI). We also evaluated the chromosome-specific effects of inbreeding on growth traits. The correlation between FPED and FROH was 0.60 while between FH and FROH and FH and FPED were 0.69 and 0.61, respectively. The annual rate of inbreeding was 0.16% for FPED, 0.02% for FH, and 0.16% for FROH. A 1% increase in FROH5 resulted in a reduction of up to -1.327 [+ or -] 0.495 kg in W210 and W378. Four inbreeding coefficients (FPED, FH, FROH2, and FROH5) had a significant effect on W378, with reductions of up to -3.810 [+ or -] 1.753 kg per 1% increase in FROH2. There was an unfavorable effect of FPED on RFI (0.01 [+ or -] 0.0002 kg dry matter/day) and of FROH on SC (-0.056 [+ or -] 0.022 cm). The FROH_CHR coefficients calculated for BTA3, BTA5, and BTA8 significantly affected the growth traits. Inbreeding depression was observed for all traits evaluated. However, these effects were greater for the criterion used for selection of the animals (i.e., W378). The increase in the genomic inbreeding was associated with a higher inbreeding depression on the traits evaluated when compared to pedigree-based inbreeding. Genomic information should be used as a tool during mating to optimize control of inbreeding and, consequently, minimize inbreeding depression in Nellore cattle.
Intronic ATTTC repeat expansions in STARD7 in familial adult myoclonic epilepsy linked to chromosome 2
Familial Adult Myoclonic Epilepsy (FAME) is characterised by cortical myoclonic tremor usually from the second decade of life and overt myoclonic or generalised tonic-clonic seizures. Four independent loci have been implicated in FAME on chromosomes (chr) 2, 3, 5 and 8. Using whole genome sequencing and repeat primed PCR, we provide evidence that chr2-linked FAME (FAME2) is caused by an expansion of an ATTTC pentamer within the first intron of STARD7 . The ATTTC expansions segregate in 158/158 individuals typically affected by FAME from 22 pedigrees including 16 previously reported families recruited worldwide. RNA sequencing from patient derived fibroblasts shows no accumulation of the AUUUU or AUUUC repeat sequences and STARD7 gene expression is not affected. These data, in combination with other genes bearing similar mutations that have been implicated in FAME, suggest ATTTC expansions may cause this disorder, irrespective of the genomic locus involved. Familial cortical myoclonic tremor (FAME) has so far been mapped to regions on chromosome 2, 3, 5 and 8 and pentameric repeat expansions in SAMD12 were identified as cause of FAME1. Here, Corbett et al . identify ATTTT/ATTTC repeat expansions in intron 1 of STARD7 in individuals with FAME2.”
Genomics advances the study of inbreeding depression in the wild
Inbreeding depression (reduced fitness of individuals with related parents) has long been a major focus of ecology, evolution, and conservation biology. Despite decades of research, we still have a limited understanding of the strength, underlying genetic mechanisms, and demographic consequences of inbreeding depression in the wild. Studying inbreeding depression in natural populations has been hampered by the inability to precisely measure individual inbreeding. Fortunately, the rapidly increasing availability of high‐throughput sequencing data means it is now feasible to measure the inbreeding of any individual with high precision. Here, we review how genomic data are advancing our understanding of inbreeding depression in the wild. Recent results show that individual inbreeding and inbreeding depression can be measured more precisely with genomic data than via traditional pedigree analysis. Additionally, the availability of genomic data has made it possible to pinpoint loci with large effects contributing to inbreeding depression in wild populations, although this will continue to be a challenging task in many study systems due to low statistical power. Now that reliably measuring individual inbreeding is no longer a limitation, a major focus of future studies should be to more accurately quantify effects of inbreeding depression on population growth and viability.
ped_(d)raw: pedigree drawing with ease
Pedigree files are ubiquitously used within bioinformatics and genetics studies to convey critical information about relatedness, sex and affected status of study samples. While the text based format of ped files is efficient for computational methods, it is not immediately intuitive to a bioinformatician or geneticist trying to understand family structures, many of which encode the affected status of individuals across multiple generations. The visualization of pedigrees into connected nodes with descriptive shapes and shading provides a far more interpretable format to recognize visual patterns and intuit family structures. Despite these advantages of a visual pedigree, it remains difficult to quickly and accurately visualize a pedigree given a pedigree text file. Here we describe ped_draw a command line and web tool as a simple and easy solution to pedigree visualization. Ped_draw is capable of drawing complex multi-generational pedigrees and conforms to the accepted standards for depicting pedigrees visually. The command line tool can be used as a simple one liner command, utilizing graphviz to generate an image file. The web tool, https://peddraw.github.io, allows the user to either: paste a pedigree file, type to construct a pedigree file in the text box or upload a pedigree file. Users can save the generated image file in various formats. We believe ped_draw is a useful pedigree drawing tool that improves on current methods due to its ease of use and approachability. Ped_draw allows users with various levels of expertise to quickly and easily visualize pedigrees.
ped_(d)raw: pedigree drawing with ease
Pedigree files are ubiquitously used within bioinformatics and genetics studies to convey critical information about relatedness, sex and affected status of study samples. While the text based format of ped files is efficient for computational methods, it is not immediately intuitive to a bioinformatician or geneticist trying to understand family structures, many of which encode the affected status of individuals across multiple generations. The visualization of pedigrees into connected nodes with descriptive shapes and shading provides a far more interpretable format to recognize visual patterns and intuit family structures. Despite these advantages of a visual pedigree, it remains difficult to quickly and accurately visualize a pedigree given a pedigree text file. Here we describe ped_draw a command line and web tool as a simple and easy solution to pedigree visualization. Ped_draw is capable of drawing complex multi-generational pedigrees and conforms to the accepted standards for depicting pedigrees visually. The command line tool can be used as a simple one liner command, utilizing graphviz to generate an image file. The web tool, https://peddraw.github.io, allows the user to either: paste a pedigree file, type to construct a pedigree file in the text box or upload a pedigree file. Users can save the generated image file in various formats. We believe ped_draw is a useful pedigree drawing tool that improves on current methods due to its ease of use and approachability. Ped_draw allows users with various levels of expertise to quickly and easily visualize pedigrees.