Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
3,931 result(s) for "peptide nucleic acids"
Sort by:
Live cell PNA labelling enables erasable fluorescence imaging of membrane proteins
DNA nanotechnology is an emerging field that promises fascinating opportunities for the manipulation and imaging of proteins on a cell surface. The key to progress is the ability to create a nucleic acid–protein junction in the context of living cells. Here we report a covalent labelling reaction that installs a biostable peptide nucleic acid (PNA) tag. The reaction proceeds within minutes and is specific for proteins carrying a 2 kDa coiled-coil peptide tag. Once installed, the PNA label serves as a generic landing platform that enables the recruitment of fluorescent dyes via nucleic acid hybridization. We demonstrate the versatility of this approach by recruiting different fluorophores, assembling multiple fluorophores for increased brightness and achieving reversible labelling by way of toehold-mediated strand displacement. Additionally, we show that labelling can be carried out using two different coiled-coil systems, with epidermal growth factor receptor and endothelin receptor type B, on both HEK293 and CHO cells. Finally, we apply the method to monitor internalization of epidermal growth factor receptor on CHO cells.A method for the covalent labelling of proteins by installing a biostable peptide nucleic acid (PNA) tag has now been developed. The PNA label serves as a generic landing platform that enables the recruitment of fluorescent dyes via nucleic acid hybridization and fluorophore removal by toehold-mediated strand displacement. Imaging of cell surface receptors, including internalized receptors, has been demonstrated using this approach.
MicroRNA silencing for cancer therapy targeted to the tumour microenvironment
A novel anti-microRNA delivery platform that targets the acidic tumour microenvironment, in which a chosen anti-miRNA is coupled to a peptide that can transport the anti-miRNA across cell membranes specifically in an acidic environment. Targeted delivery of oncomiRNAs The targeted silencing of certain aberrantly expressed microRNAs (miRNAs) — known as oncomiRs — may prove useful for cancer therapy if the silencing agents can be efficiently delivered to the tumours. Frank Slack and colleagues now exploit the generally acidic tumour environment by devising nanoparticle-based delivery vehicles in which a chosen anti-miR is coupled to a peptide that can transport the anti-miR across cell membranes specifically in an acidic environment. In a lymphoma mouse model, this formulation can specifically target anti-miR-155 to those tumours whose growth depends on miR-155 expression, reducing tumour growth and metastases without apparent toxicity to the mice. This approach should be widely applicable for targeting a variety of tumours with an anti-miR of choice. MicroRNAs are short non-coding RNAs expressed in different tissue and cell types that suppress the expression of target genes. As such, microRNAs are critical cogs in numerous biological processes 1 , 2 , and dysregulated microRNA expression is correlated with many human diseases. Certain microRNAs, called oncomiRs, play a causal role in the onset and maintenance of cancer when overexpressed. Tumours that depend on these microRNAs are said to display oncomiR addiction 3 , 4 , 5 . Some of the most effective anticancer therapies target oncogenes such as EGFR and HER2 ; similarly, inhibition of oncomiRs using antisense oligomers (that is, antimiRs) is an evolving therapeutic strategy 6 , 7 . However, the in vivo efficacy of current antimiR technologies is hindered by physiological and cellular barriers to delivery into targeted cells 8 . Here we introduce a novel antimiR delivery platform that targets the acidic tumour microenvironment, evades systemic clearance by the liver, and facilitates cell entry via a non-endocytic pathway. We find that the attachment of peptide nucleic acid antimiRs to a peptide with a low pH-induced transmembrane structure (pHLIP) produces a novel construct that could target the tumour microenvironment, transport antimiRs across plasma membranes under acidic conditions such as those found in solid tumours (pH approximately 6), and effectively inhibit the miR-155 oncomiR in a mouse model of lymphoma. This study introduces a new model for using antimiRs as anti-cancer drugs, which can have broad impacts on the field of targeted drug delivery.
Therapeutic Peptide Nucleic Acids: Principles, Limitations, and Opportunities
Since their invention in 1991, peptide nucleic acids (PNAs) have been used in a myriad of chemical and biological assays. More recently, peptide nucleic acids have also been demonstrated to hold great potential as therapeutic agents because of their physiological stability, affinity for target nucleic acids, and versatility. While recent modifications in their design have further improved their potency, their preclinical development has reached new heights due to their combination with recent advancements in drug delivery. This review focuses on recent advances in PNA therapeutic applications, in which chemical modifications are made to improve PNA function and nanoparticles are used to enhance PNA delivery.
In utero nanoparticle delivery for site-specific genome editing
Genetic diseases can be diagnosed early during pregnancy, but many monogenic disorders continue to cause considerable neonatal and pediatric morbidity and mortality. Early intervention through intrauterine gene editing, however, could correct the genetic defect, potentially allowing for normal organ development, functional disease improvement, or cure. Here we demonstrate safe intravenous and intra-amniotic administration of polymeric nanoparticles to fetal mouse tissues at selected gestational ages with no effect on survival or postnatal growth. In utero introduction of nanoparticles containing peptide nucleic acids (PNAs) and donor DNAs corrects a disease-causing mutation in the β-globin gene in a mouse model of human β-thalassemia, yielding sustained postnatal elevation of blood hemoglobin levels into the normal range, reduced reticulocyte counts, reversal of splenomegaly, and improved survival, with no detected off-target mutations in partially homologous loci. This work may provide the basis for a safe and versatile method of fetal gene editing for human monogenic disorders. The correction of genetic defects in utero could allow for improved outcomes of gene therapy. Here, the authors demonstrate safe delivery of nanoparticles to fetal mouse tissues, and show that nanoparticles containing peptide nucleic acids to edit the beta-globin gene are effective in a mouse model of beta-thalassemia.
Synthetic molecular evolution of hybrid cell penetrating peptides
Peptides and analogs such as peptide nucleic acids (PNA) are promising tools and therapeutics, but the cell membrane remains a barrier to intracellular targets. Conjugation to classical cell penetrating peptides (CPPs) such as pTat 48–60 (tat) and pAntp 43–68 (penetratin) facilitates delivery; however, efficiencies are low. Lack of explicit design principles hinders rational improvement. Here, we use synthetic molecular evolution (SME) to identify gain-of-function CPPs with dramatically improved ability to deliver cargoes to cells at low concentration. A CPP library containing 8192 tat/penetratin hybrid peptides coupled to an 18-residue PNA is screened using the HeLa pTRE-LucIVS2 splice correction reporter system. The daughter CPPs identified are one to two orders of magnitude more efficient than the parent sequences at delivery of PNA, and also deliver a dye cargo and an anionic peptide cargo. The significant increase in performance following a single iteration of SME demonstrates the power of this approach to peptide sequence optimization. Therapeutic peptide nucleic acids can be delivered into cells by conjugation to cell penetrating peptides (CPPs), but efficiency is usually low. Here the authors use synthetic molecular evolution and a luciferase-based library screen to generate new CPPs with improved efficiency and lower toxicity.
Peptide Nucleic Acid-Based Biosensors for Cancer Diagnosis
The monitoring of DNA and RNA biomarkers freely circulating in the blood constitutes the basis of innovative cancer detection methods based on liquid biopsy. Such methods are expected to provide new opportunities for a better understanding of cancer disease at the molecular level, thus contributing to improved patient outcomes. Advanced biosensors can advance possibilities for cancer-related nucleic acid biomarkers detection. In this context, peptide nucleic acids (PNAs) play an important role in the fabrication of highly sensitive biosensors. This review provides an overview of recently described PNA-based biosensors for cancer biomarker detection. One of the most striking features of the described detection approaches is represented by the possibility to detect target nucleic acids at the ultra-low concentration with the capability to identify single-base mutations.
Light-emitting self-assembled peptide nucleic acids exhibit both stacking interactions and Watson–Crick base pairing
The two main branches of bionanotechnology involve the self-assembly of either peptides or DNA. Peptide scaffolds offer chemical versatility, architectural flexibility and structural complexity, but they lack the precise base pairing and molecular recognition available with nucleic acid assemblies. Here, inspired by the ability of aromatic dipeptides to form ordered nanostructures with unique physical properties, we explore the assembly of peptide nucleic acids (PNAs), which are short DNA mimics that have an amide backbone. All 16 combinations of the very short di-PNA building blocks were synthesized and assayed for their ability to self-associate. Only three guanine-containing di-PNAs— CG , GC and GG —could form ordered assemblies, as observed by electron microscopy, and these di-PNAs efficiently assembled into discrete architectures within a few minutes. The X-ray crystal structure of the GC di-PNA showed the occurrence of both stacking interactions and Watson–Crick base pairing. The assemblies were also found to exhibit optical properties including voltage-dependent electroluminescence and wide-range excitation-dependent fluorescence in the visible region. Peptide nucleic acids can self-assemble into ordered architectures that are coordinated by both stacking interactions and Watson–Crick base pairing, and exhibit a variety of optical properties.
Impact of different cell penetrating peptides on the efficacy of antisense therapeutics for targeting intracellular pathogens
There is a pressing need for novel and innovative therapeutic strategies to address infections caused by intracellular pathogens. Peptide nucleic acids (PNAs) present a novel method to target intracellular pathogens due to their unique mechanism of action and their ability to be conjugated to cell penetrating peptides (CPP) to overcome challenging delivery barriers. In this study, we targeted the RNA polymerase α subunit ( rpo A) using a PNA that was covalently conjugated to five different CPPs. Changing the conjugated CPP resulted in a pronounced improvement in the antibacterial activity observed against Listeria monocytogenes in vitro , in cell culture and in a Caenorhabditis elegans ( C. elegans ) infection model. Additionally, a time-kill assay revealed three conjugated CPPs rapidly kill Listeria within 20 minutes without disrupting the bacterial cell membrane. Moreover, rpo A gene silencing resulted in suppression of its message as well as reduced expression of other critical virulence genes (Listeriolysin O and two phospholipases plc A and plc B) in a concentration-dependent manner. Furthermore, PNA-inhibition of bacterial protein synthesis was selective and did not adversely affect mitochondrial protein synthesis. This study provides a foundation for improving and developing PNAs conjugated to CPPs to better target intracellular pathogens.
Peptide nucleic acids can form hairpins and bind RNA-binding proteins
RNA-binding proteins (RBPs) are a major class of proteins that interact with RNAs to change their fate or function. RBPs and the ribonucleoprotein complexes they constitute are involved in many essential cellular processes. In many cases, the molecular details of RBP:RNA interactions differ between viruses, prokaryotes and eukaryotes, making prokaryotic and viral RBPs good potential drug targets. However, targeting RBPs with small molecules has so far been met with limited success as RNA-binding sites tend to be extended, shallow and dynamic with a mixture of charged, polar and hydrophobic interactions. Here, we show that peptide nucleic acids (PNAs) with nucleic acid-like binding properties and a highly stable peptide-like backbone can be used to target some RBPs. We have designed PNAs to mimic the short RNA stem-loop sequence required for the initiation of prokaryotic signal recognition particle (SRP) assembly, a target for antibiotics development. Using a range of biophysical and biochemical assays, the designed PNAs were demonstrated to fold into a hairpin structure, bind the targeted protein and compete with the native RNA hairpin to inhibit SRP formation. To show the applicability of PNAs against other RBPs, a PNA was also shown to bind Nsp9 from SARS-CoV-2, a protein that exhibits non-sequence-specific RNA binding but preferentially binds hairpin structures. Taken together, our results support that PNAs can be a promising class of compounds for targeting RNA-binding activities in RBPs.
Therapeutic targeting using tumor specific peptides inhibits long non-coding RNA HOTAIR activity in ovarian and breast cancer
Long non-coding RNAs (lncRNAs) play key roles in human diseases, including cancer. Functional studies of the lncRNA HOTAIR (HOX transcript antisense RNA) provide compelling evidence for therapeutic targeting of HOTAIR in cancer, but targeting lncRNAs in vivo has proven to be difficult. In the current study, we describe a peptide nucleic acids (PNA)-based approach to block the ability of HOTAIR to interact with EZH2 and subsequently inhibit HOTAIR-EZH2 activity and resensitize resistant ovarian tumors to platinum. Treatment of HOTAIR-overexpressing ovarian and breast cancer cell lines with PNAs decreased invasion and increased chemotherapy sensitivity. Furthermore, the mechanism of action correlated with reduced nuclear factor-kappaB (NF-κB) activation and decreased expression of NF-κB target genes matrix metalloprotease 9 and interleukin 6. To deliver the anti-lncRNA to the acidic (pH approximately 6) tumor microenvironment, PNAs were conjugated to pH-low insertion peptide (pHLIP). Treatment of mice harboring platinum-resistant ovarian tumor xenografts with pHLIP-PNA constructs suppressed HOTAIR activity, reduced tumor formation and improved survival. This first report on pHLIP-PNA lncRNA targeting solid tumors in vivo suggests a novel cancer therapeutic approach.