Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
7 result(s) for "pharmacomodulation"
Sort by:
Discovery of Novel Benzamide-Based Sigma-1 Receptor Agonists with Enhanced Selectivity and Safety
Central nervous system (CNS) disorders such as neurodegenerative diseases, multiple sclerosis, or even brain ischemia represent major therapeutic challenges with limited effective treatments. The sigma-1 receptor (S1R), a unique ligand-operated molecular chaperone enriched at mitochondria-associated membranes, has emerged as a promising drug target due to its role in neuroprotection and neuroinflammation. Building upon our previously identified S1R ligand (compound 1), we designed and synthesized six novel benzamide derivatives through pharmacomodulation to optimize affinity, selectivity, and safety profiles. Among these, compound 2 demonstrated superior S1R affinity, improved selectivity over the sigma-2 receptor (S2R), and favorable ADME properties, including enhanced permeability and markedly reduced in vitro cardiac toxicity compared to the lead compound. Functional assays confirmed the agonist activity of key derivatives, while safety evaluations revealed low cytotoxicity and minimal off-target receptor interactions. Collectively, these findings support compound 2 as a promising candidate for further preclinical development in S1R-related CNS disorders.
Chemical Constituents of Macaranga occidentalis, Antimicrobial and Chemophenetic Studies
Medicinal plants are known as sources of potential antimicrobial compounds belonging to different classes. The aim of the present work was to evaluate the antimicrobial potential of the crude extract, fractions, and some isolated secondary metabolites from the leaves of Macaranga occidentalis, a Cameroonian medicinal plant traditionally used for the treatment of microbial infections. Repeated column chromatography of the ethyl acetate and n-butanol fractions led to the isolation of seventeen previously known compounds (1−17), among which three steroids (1−3), one triterpene (4), four flavonoids (5−8), two stilbenoids (9 and 10) four ellagic acid derivatives (11−14), one geraniinic acid derivative (15), one coumarine (16), and one glyceride (17). Their structures were elucidated mainly by means of extensive spectroscopic and spectrometric (1D and 2D NMR and, MS) analysis and comparison with the published data. The crude extract, fractions, and isolated compounds were all screened for their antimicrobial activity. None of the natural compounds was active against Candida strains. However, the crude extract, fractions, and compounds showed varying levels of antibacterial properties against at least one of the tested bacterial strains, with minimal inhibitory concentrations (MICs) ranging from 250 to 1000 μg/mL. The n-butanol (n-BuOH) fraction was the most active against Escherichia coli ATCC 25922, with an MIC value of 250 μg/mL. Among the isolated compounds, schweinfurthin B (10) exhibited the best activity against Staphylococcus aureus NR 46003 with a MIC value of 62.5 μg/mL. In addition, schweinfurthin O (9) and isomacarangin (6) also exhibited moderate activity against the same strain with a MIC value of 125 μg/mL. Therefore, pharmacomodulation was performed on compound 6 and three new semisynthetic derivatives (6a–c) were prepared by allylation and acetylation reactions and screened for their in vitro antimicrobial activity. None of the semisynthetic derivatives showed antimicrobial activity against the same tested strains. The chemophenetic significance of the isolated compounds is also discussed in this paper.
Enhancing Antileishmanial Activity of Amidoxime-Based Compounds Bearing a 4,5-Dihydrofuran Scaffold: In Vitro Screening Against Leishmania amazonensis
Leishmaniasis, a protozoan disease affecting humans, exposes significant shortcomings in current treatments. In continuation to our previous findings on amidoxime-based antileishmanial compounds bearing a 4,5-dihydrofuran scaffold, twelve new amidoxime derivatives substituted at position 3 with an amide bearing a nitrogen heterocycle were synthesized. This series was designed to replace the sulfone and aryl group on a previously reported HIT. The synthesis of these compounds involved the following three-step pathway: manganese (III) acetate-based cyclization of a β-ketoester, followed by amidation with LiHMDS and a final reaction with hydroxylamine. Three of them, containing either bromine, chlorine, or methyl substitutions and featuring a pyridine moiety, showed an interesting toxicity–activity relationship in vitro. They exhibited IC50 values of 15.0 µM, 16.0 µM, and 17.0 µM against the promastigote form of the parasite and IC50 values of 0.5 µM, 0.6 µM, and 0.3 µM against the intracellular amastigote form, respectively. A selectivity index (SI) greater than 300 was established between the cytotoxic concentrations (in murine macrophages) and the effective concentrations (against the intracellular form of Leishmania amazonensis). This SI is at least seventy times higher than that observed for Pentamidine and twenty-five times higher than that observed for the reference HIT, as previously reported.
2-Aminothiophene Derivatives—New Drug Candidates Against Leishmaniasis: Drug Design, Synthesis, Pharmacomodulation, and Antileishmanial Activity
Background/Objectives: Leishmaniasis is one of the 20 Neglected Tropical Diseases according to the WHO, affecting approximately 12 million people in four continents, generating serious public health problems. The lack of therapeutic options, associated with toxicity and the emergence of resistance to the few available drugs, makes it urgent to develop new drug options. In this context, the aims of this work are to expand the knowledge about the pharmacophore group responsible for the antileishmanial potential of 2-aminothiophene derivatives. Thus, new compounds were synthesized containing chemical modifications at the C-3, C-4, and C-5 positions of the 2-aminothiophene ring, in addition to the S-Se bioisosterism. Methods: Dozens of 2-AT and 2-aminoselenophen (2-AS) derivatives were sequentially synthesized through applications of the Gewald reaction and were then evaluated in vitro for their activities against L. amazonensis and for cytotoxicity against macrophages. Results: Several series of compounds were synthesized, and it was possible to identify some substitution patterns favorable to the activity generating compounds with IC50 values below 10 µM, such as the non-essentiality of the presence of a carbonitrile group at C-3; the importance of the presence and size of cycloalkyl/piperidinyl chains at C-4 and C-5 in modulating the activity; and the increase in activity without affecting the safety of the S/Se bioisosteric substitution. Conclusions: Taken together, these findings reaffirm the great potential of 2-aminothiophenes to generate antileishmanial drug candidates and offers contributions to the drug design of compounds with an even more promising profile for the problem of leishmaniasis.
7-Chloroquinolinehydrazones as First-in-Class Anticancer Experimental Drugs in the NCI-60 Screen among Different Investigated Series of Aryl, Quinoline, Pyridine, Benzothiazole and Imidazolehydrazones
In the context of a continuously increasing global cancer risk, the search for new effective and affordable anticancer drugs remains a constant demand. This study describes chemical experimental drugs able to destroy cancer cells by arresting their growth. New hydrazones with quinoline, pyridine, benzothiazole and imidazole moieties have been synthesized and evaluated for their cytotoxic potential against 60 cancer cell lines. 7-Chloroquinolinehydrazones were the most active in the current study and exhibited good cytotoxic activity with submicromolar GI50 values on a large panel of cell lines from nine tumor types (leukemia, non-small cell lung cancer, colon cancer, CNS cancer, melanoma, ovarian cancer, renal cancer, prostate cancer and breast cancer). This study provided consistent structure-activity relationships in this series of experimental antitumor compounds.
Efflux-Mediated Resistance in Enterobacteriaceae: Recent Advances and Ongoing Challenges to Inhibit Bacterial Efflux Pumps
Efflux is one of the key mechanisms used by Gram-negative bacteria to reduce internal antibiotic concentrations. These active transport systems recognize and expel a wide range of toxic molecules, including antibiotics, thereby contributing to reduced antibiotic susceptibility and allowing the bacteria to acquire additional resistance mechanisms. To date, unlike other resistance mechanisms such as enzymatic modification or target mutations/masking, efflux is challenging to detect and counteract in clinical settings, and no standardized methods are currently available to diagnose or inhibit this mechanism effectively. This review first outlines the structural and functional features of major efflux pumps in Gram-negative bacteria and their role in antibiotic resistance. It then explores various strategies used to curb their activity, with a particular focus on efflux pump inhibitors under development, detailing their structural classes, modes of action, and pharmacological potential. We discuss the main obstacles to their development, including the structural complexity and substrate promiscuity of efflux mechanisms, the limitations of current screening methods, pharmacokinetic and tissue distribution issues, and the risk of off-target toxicity. Overcoming these multifactorial barriers is essential to the rational development of less efflux-prone antibiotics or of efflux pump inhibitors.
Combination of cilostazol and clopidogrel attenuates Rat critical limb ischemia
Background and aim Procedural failure and untoward clinical outcomes after surgery remain problematic in critical limb ischemia (CLI) patients. This study tested a clopidogrel-cilostazol combination treatment compared with either treatment alone in attenuating CLI and improving CLI-region blood flow in rats. Methods Male Sprague–Dawley rats (n = 40) were equally divided into five groups: control, CLI induction only, CL I + cilostazol (12.0 mg/day/kg), CLI + clopidogrel (8.0 mg/kg/day) and CLI + combined cilostazol-clopidogrel. After treatment for 21 days, Laser Doppler imaging was performed. Results On day 21, the untreated CLI group had the lowest ratio of ischemic/normal blood flow (p < 0.001). Inflammation measured by VCAM-1 protein expression; oxidative stress; PAI-1, MMP-9 and TNF-α mRNA expressions; and immunofluorescence staining (IF) of CD68+ cells was lower with combined treatment than with the other treatments, and lower in the two single-treatment groups than the untreated CLI group (all p < 0.01). Anti-inflammatory mRNA expression of interleukin-10, and eNOS showed a reverse pattern among these groups. Apoptosis measured by Bax, caspase-3 and PARP; and muscle damage measured by cytosolic cytochrome-C, and serum and muscle micro-RNA-206 were all lowest with combination treatment, and the two single-treatment groups showed lower values than the untreated group (all p < 0.001). Angiogenesis measured by eNOS, IF staining of CD31+ and vWF + cells; and number of vessels in CLI region were highest with combination treatment and higher in the single-treatment groups than the untreated group (all p < 0.001). Conclusion Combined cilostazol-clopidogrel therapy is superior to either agent alone in improving ischemia in rodent CLI.