Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
1 result(s) for "phased array 3-D imaging sonar system"
Sort by:
Optimization of Sparse Cross Array Synthesis via Perturbed Convex Optimization
Three-dimensional (3-D) imaging sonar systems require large planar arrays, which incur hardware costs. In contrast, a cross array consisting of two perpendicular linear arrays can also support 3-D imaging while dramatically reducing the number of sensors. Moreover, the use of an aperiodic sparse array can further reduce the number of sensors efficiently. In this paper, an optimized method for sparse cross array synthesis is proposed. First, the beamforming of a cross array based on a multi-frequency algorithm is simplified for both near-field and far-field. Next, a perturbed convex optimization algorithm is proposed for sparse cross array synthesis. The method based on convex optimization utilizes a first-order Taylor expansion to create position perturbations that can optimize the beam pattern and minimize the number of active sensors. Finally, a cross array with 100 + 100 sensors is employed from which a sparse cross array with 45 + 45 sensors is obtained via the proposed method. The experimental results show that the proposed method is more effective than existing methods for obtaining optimum results for sparse cross array synthesis in both the near-field and far-field.