Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
3,050 result(s) for "phenanthrenes"
Sort by:
Ingestion and Egestion of Microplastics by the Cladoceran Daphnia magna: Effects of Regular and Irregular Shaped Plastic and Sorbed Phenanthrene
The presence of microplastics in aquatic ecosystems is of increasing global concern. This study investigated ingestion, egestion and acute effects of polyethylene microplastics in Daphnia magna . Fate of regular shaped microplastic beads (10–106 µm) were compared with irregular shaped microplastic fragments (10–75 µm). Daphnia magna ingested regular and irregular microplastic with uptake between 0.7 and 50 plastic particles/animal/day when exposed to microplastic concentrations of 0.0001–10 g/L. Egestion of irregular fragments was slower than that of microplastic beads. The EC50 for irregular microplastic was 0.065 g/L whereas microplastic beads were less inhibitory. The potential of microplastic to act as vector for hydrophobic pollutants was examined using [ 14 C]phenanthrene as tracer. Polyethylene microplastic sorbed less [ 14 C]phenanthrene compared to natural plankton organisms (bacteria, algae, yeast). As microplastics are much less abundant in most aquatic ecosystems compared to plankton organisms this suggests a limited role as vector for hydrophobic pollutants under current environmental conditions.
Triptolide in renal disorders: dual roles of therapeutic potential and nephrotoxicity: a narrative review
Triptolide (TP), derived from , exhibits anti-inflammatory, immunosuppressive, and antifibrotic properties with potential for treating renal diseases, but its clinical use is restricted by dose-dependent nephrotoxicity. The aim of this review is to comprehensively summarize the dual roles of TP, elucidate its therapeutic mechanisms and nephrotoxic pathways, and to explore strategies to mitigate its toxicity. A literature search was performed using the PubMed and Web of Science databases. The search covered publications from the earliest available date until November 2025. The key search terms included 'triptolide', 'renal', 'kidney' and their combinations. TP exerts dose-dependent dual effects in renal models. Therapeutic doses (typically ≤200 μg/kg ) demonstrate efficacy in modulating immune responses, protecting podocytes, promoting apoptosis in hyperproliferative cells and inhibiting renal fibrosis. Conversely, its nephrotoxicity manifests at supratherapeutic doses (often >400 μg/kg ) through oxidative stress, inflammation, metabolic dysregulation, and direct damage to renal tubular cells. The therapeutic efficacy and toxicity of TP are critically contingent on both dose and temporal parameters. TP holds significant but challenging potential for renal therapy. Future research should define its therapeutic window and advance strategies such as structural analogs, targeted delivery systems, and combination therapies to effectively separate efficacy from toxicity for clinical translation.
Fosdagrocorat (PF-04171327) versus prednisone or placebo in rheumatoid arthritis: a randomised, double-blind, multicentre, phase IIb study
ObjectivesGlucocorticoids have anti-inflammatory, transrepression-mediated effects, although adverse events (AEs; transactivation-mediated effects) limit long-term use in patients with rheumatoid arthritis (RA). We evaluated the efficacy and safety of fosdagrocorat (PF-04171327), a dissociated agonist of the glucocorticoid receptor, versus prednisone or placebo.MethodsIn this 12-week, phase II, randomised controlled trial, 323 patients with moderate to severe RA were randomised 1:1:1:1:1:1:1 to fosdagrocorat (1 mg, 5 mg, 10 mg or 15 mg), prednisone (5 mg or 10 mg) or placebo, once daily. The primary endpoints (week 8) were American College of Rheumatology 20% improvement criteria (ACR20) responses, and percentage changes from baseline in biomarkers of bone formation (procollagen type 1 N-terminal peptide [P1NP]) and resorption (urinary N-telopeptide to urinary creatinine ratio [uNTx:uCr]). Safety was assessed.ResultsACR20 responses with fosdagrocorat 10 mg and 15 mg were superior to placebo, and fosdagrocorat 15 mg was non-inferior to prednisone 10 mg (week 8 model-predicted ACR20 responses: 47%, 61%, 69% and 73% vs 51%, 71% and 37% with fosdagrocorat 1 mg, 5 mg, 10 mg and 15 mg vs prednisone 5 mg, 10 mg and placebo, respectively). Percentage changes from baseline in P1NP with fosdagrocorat 1 mg, 5 mg and 10 mg met non-inferiority criteria to prednisone 5 mg. Corresponding changes in uNTx:uCr varied considerably. All fosdagrocorat doses reduced glycosylated haemoglobin levels. AEs were similar between groups; 63 (19.5%) patients reported treatment-related AEs; 9 (2.8%) patients reported serious AEs. No patients had adrenal insufficiency, treatment-related significant infections or laboratory abnormalities. No deaths were reported.ConclusionIn patients with RA, fosdagrocorat 10 mg and 15 mg demonstrated efficacy similar to prednisone 10 mg and safety similar to prednisone 5 mg.Trial registration numberNCT01393639
The Double-Edge Sword of Natural Phenanthrenes in the Landscape of Tumorigenesis
Phenanthrenes, which are polycyclic aromatic hydrocarbons comprising three benzene rings, exhibit a diverse range of functions. These compounds are utilized in the synthesis of resins, plant growth hormones, reducing dyes, tannins and other products. Notably, phenanthrenes possess significant pharmacological properties, including anti-tumor, anti-inflammatory and antioxidant activities, offering broad prospects for development, particularly in the fields of medicine and health. Interestingly, although aristolochic acid (AA) is a potent carcinogen, its lactam analogs can kill cancer cells and exhibit therapeutic effects against cancer. This provides a promising strategy for the toxicity-effect transformation of phenanthrenes. In this paper, we reviewed 137 articles to systematically review the anti-tumor potential and toxic effects of natural phenanthrenes isolated from the 19th century to the present, thus offering references and laying a foundation for their further research, development and utilization.
Bioremediation of petroleum refinery wastewater using Bacillus subtilis IH-1 and assessment of its toxicity
Environmental contamination from petroleum refinery operations has increased due to the rapid population growth and modernization of society, necessitating urgent repair. Microbial remediation of petroleum wastewater by prominent bacterial cultures holds promise in circumventing the issue of petroleum-related pollution. Herein, the bacterial culture was isolated from petroleum-contaminated sludge samples for the valorization of polyaromatic hydrocarbons and biodegradation of petroleum wastewater samples. The bacterial strain was screened and identified as Bacillus subtilis IH-1. After six days of incubation, the bacteria had degraded 25.9% of phenanthrene and 20.3% of naphthalene. The treatment of wastewater samples was assessed using physico-chemical and Fourier-transform infrared spectroscopy analysis, which revealed that the level of pollutants was elevated and above the allowed limits. Following bacterial degradation, the reduction in pollution parameters viz. EC (82.7%), BOD (87.0%), COD (80.0%), total phenols (96.3%), oil and grease (79.7%), TKN (68.8%), TOC (96.3%) and TPH (52.4%) were observed. The reduction in pH and heavy metals were also observed after bacterial treatment. V. mungo was used in the phytotoxicity test, which revealed at 50% wastewater concentration the reduction in biomass (30.3%), root length (87.7%), shoot length (93.9%), and seed germination (30.0%) was observed in comparison to control. When A. cepa root tips immersed in varying concentrations of wastewater samples, the mitotic index significantly decreased, suggesting the induction of cytotoxicity. However, following the bacterial treatment, there was a noticeable decrease in phytotoxicity and cytotoxicity. The bacterial culture produces lignin peroxidase enzyme and has the potential to degrade the toxic pollutants of petroleum wastewater. Therefore the bacterium may be immobilised or directly used at reactor scale or pilot scale study to benefit the industry and environmental safety.
Tumor Microenvironment Responsive Key Nanomicelles for Effective Against Invasion and Metastasis in Ovarian Cancer Using Mice Model
Ovarian cancer is difficult to detect in its early stages, and it has a high potential for invasion and metastasis, along with a high rate of recurrence. These factors contribute to the poor prognosis and reduced survival times for patients with this disease. The effectiveness of conventional chemoradiotherapy remains limited. Nano-particles, as a novel drug delivery system, have significant potential for improving therapeutic efficacy and overcoming these challenges. According to the high expression level of matrix metalloproteinase-2 (MMP-2) in the tumor microenvironment, MMP-2 responsive nano-particles (PVGLIG-MTX-D/T-NMs) containing docetaxel and triptolide were prepared by the thin-film dispersion method. The synergistic effect between docetaxel and triptolide was systematically investigated, the ratio of the two drugs was optimized, and the physicochemical properties of the nano-particles and their ability to inhibit ovarian cancer cell growth and metastasis were evaluated in vitro and in vivo. PVGLIG-MTX-D/T-NMs enhanced the targeting, stability, and bioavailability of the drug, while reducing the dose and toxicity. In addition, by regulating the expression levels of E-Cadherin, N-Cadherin, matrix metalloproteinases (MMPs), hypoxia-inducible factor 1-alpha (HIF-1α), and vascular endothelial growth factor (VEGF), it exhibited an inhibitory effect on epithelial-mesenchymal transformation (EMT) and tumor cell angiogenesis, and effectively inhibited the invasion and metastasis of ovarian cancer cells. PVGLIG-MTX-D/T-NMs achieved passive targeting of tumor sites by enhancing permeability and retention (EPR) effects. Subsequently, the uptake of the drug by tumor cells was enhanced by MMP-2 responsiveness and the modification of methotrexate targeting ligands. By regulating the expression levels of invasion- and metastasis-related proteins in tumor tissues, the nano-particles affected the EMT process, inhibited tumor angiogenesis, and suppressed the malignant potential of invasion and metastasis in ovarian cancer. These findings provided a new direction for further exploration of tumor-targeted therapy.
Homotypic cell membrane-camouflaged biomimetic PLGA nanoparticle loading triptolide for the treatment of hepatocellular carcinoma
Hepatocellular carcinoma (HCC) is the fourth leading cause of cancer-associated death worldwide. Beside early detection, early diagnosis, and early surgery, it is urgent to try new strategies for the treatment of HCC. Triptolide (TPL) has been employed to treat HCC. However, its clinical applications were restricted by the narrow therapeutic window, severe toxicity, and poor water-solubility. In this study, we developed cancer cell membrane-camouflaged biomimetic PLGA nanoparticles loading TPL (TPL@mPLGA) with the homologous targeting property for the treatment of HCC. The TPL@mPLGA was successfully prepared with particle size of 195.5 ± 7.5 nm and zeta potential at -21.5 ± 0.2 mV with good stability. The drug loading (DL) of TPL@mPLGA was 2.94%. After Huh-7 cell membrane coating, the natural Huh-7 cell membrane proteins were found to be retained on TPL@mPLGA, thus endowing the TPL@mPLGA with enhanced accumulation at tumor site, and better anti-tumor activity and when compared with TPL or TPL@PLGA. The TPL@mPLGA showed enhanced anti-tumor effects and reduced toxicity of TPL, which could be adopted for the treatment of HCC.
Inflammation-Responsive Mesoporous Silica Nanoparticles with Synergistic Anti-inflammatory and Joint Protection Effects for Rheumatoid Arthritis Treatment
PurposeJoint destruction is a major burden and an unsolved problem in rheumatoid arthritis (RA) patients. We designed an intra-articular mesoporous silica nanosystem (MSN-TP@PDA-GlcN) with anti-inflammatory and joint protection effects. The nanosystem was synthesized by encapsulating triptolide (TP) in mesoporous silica nanoparticles and coating it with pH-sensitive polydopamine (PDA) and glucosamine (GlcN) grafting on the PDA. The nano-drug delivery system with anti-inflammatory and joint protection effects should have good potency against RA.MethodsA template method was used to synthesize mesoporous silica (MSN). MSN-TP@PDA-GlcN was synthesized via MSN loading with TP, coating with PDA and grafting of GlcN on PDA. The drug release behavior was tested. A cellular inflammatory model and a rat RA model were used to evaluate the effects on RA. In vivo imaging and microdialysis (MD) system were used to analyze the sustained release and pharmacokinetics in RA rats.ResultsTMSN-TP@PDA-GlcN was stable, had good biocompatibility, and exhibited sustained release of drugs in acidic environments. It had excellent anti-inflammatory effects in vitro and in vivo. It also effectively repaired joint destruction in vivo without causing any tissue toxicity. In vivo imaging and pharmacokinetics experiments showed that the nanosystem prolonged the residence time, lowered the Cmax value and enhanced the relative bioavailability of TP.ConclusionsThese results demonstrated that MSN-TP@PDA-GlcN sustained the release of drugs in inflammatory joints and produced effective anti-inflammatory and joint protection effects on RA. This study provides a new strategy for the treatment of RA.
Targeted therapy of rheumatoid arthritis via macrophage repolarization
The polarization of macrophages plays a critical role in the physiological and pathological progression of rheumatoid arthritis (RA). Activated M1 macrophages overexpress folate receptors in arthritic joints. Hence, we developed folic acid (FA)-modified liposomes (FA-Lips) to encapsulate triptolide (TP) (FA-Lips/TP) for the targeted therapy of RA. FA-Lips exhibited significantly higher internalization efficiency in lipopolysaccharide (LPS)-stimulated RAW 264.7 cells than liposomes (Lips) in the absence of folate. Next, an adjuvant-induced arthritis (AIA) rat model was established to explore the biodistribution profiles of FA-Lips which showed markedly selective accumulation in inflammatory paws. Moreover, FA-Lips/TP exhibited greatly improved therapeutic efficacy and low toxicity in AIA rats by targeting M1 macrophages and repolarizing macrophages from M1 to M2 subtypes. Overall, a safe FA-modified liposomal delivery system encapsulating TP was shown to achieve inflammation-targeted therapy against RA via macrophage repolarization.
Synthetic organic spin chemistry for structurally well-defined open-shell graphene fragments
Phenalenyl — a triangular neutral radical consisting of three adjacent benzene rings — and π -conjugated derivatives based on the same motif, can be viewed as 'open-shell graphene fragments'. This Perspective discusses their electronic-spin structures, the properties that arise from their unpaired electrons, and highlights their potential applications for molecular spin devices. Graphene, a two-dimensional layer of sp 2 -hybridized carbon atoms, can be viewed as a sheet of benzene rings fused together. Three benzene rings can be combined in three different ways, to yield linear anthracene and angular phenanthrene, where the rings share two C–C bonds, and the phenalenyl structure where three C–C bonds are shared between the rings. This third structure contains an uneven number of carbon atoms and, hence, in its neutral state, an uneven number of electrons — that is, it is a radical. All three structures may be viewed as being sections of graphene. Extension of this concept leads to an entire family of phenalenyl derivatives — 'open-shell graphene fragments' — that are of substantial interest from the standpoint of fundamental science as well as in view of their potential applications in materials chemistry, in particular quantum electronic devices. Here we discuss current trends and challenges in this field.